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Strength–Ductility Synergy in High Entropy Alloys 
by Tuning the Thermo‑Mechanical Process 
Parameters: A Comprehensive Review

1 Introduction
High Entropy Alloys (HEA) are the class of alloys 
having minimum of five principal elements with 
a concentration of constituent elements between 
5 and 35 at%1–4. The microstructure, properties, 
and performance of HEA are driven by four core 
effects, i.e., high configurational entropy1,5, lat-
tice distortion3, sluggish diffusion6, and cocktail 
effect7. Owing to these effects, HEA exhibit excel-
lent tensile ductility, fracture toughness, corrosion 
resistance, and many other important properties 
of relevance8–13. The combination of desirable 
property attributes in HEAs makes these materi-
als a perfect candidate for numerous applications, 
like in gas storage, in ion irradiation plants, and 
for biomedical implants13–15. The lower yield 
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Abstract | The strength–ductility trade-off is an eminent factor in decid‑
ing the mechanical performance of a material with regard to specific 
applications. The strength–ductility synergy is generally inadequate 
in as-synthesized high entropy alloys (HEAs); however, it can be tai‑
lored owing to its tunable microstructure and phase stability. Thermo-
mechanical processing (TMP) allows the microstructure to be tailored to 
achieve desired strength–ductility combination. The additional attribute 
is evolution of texture, which also significantly influences the mechanical 
properties. This review presents a critical insight into the role of TMP to 
achieve superior strength–ductility symbiosis at room temperature in sin‑
gle-phase (FCC, BCC) and multiphase HEA. The role of overall process‑
ing strategy of HEAs encompassing rolling and subsequent annealing in 
relation to the evolution of microstructure and texture in have been dis‑
cussed. Recently practiced severe plastic deformation processes have 
also shown promise in improving the strength–ductility combination. 
The relevance of these processes in the processing of HEAs has also 
been analysed. At the end, futuristic approaches have been elaborated 
to enable efficient as well as hassle-free process towards achieving the 
proficiency of strength–ductility in HEAs.
Keywords:  High entropy alloy, Rolling, Thermo-mechanical processing, Strength–ductility synergy, 
Microstructure, Texture
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strength of many HEA, in as-synthesized condi-
tion, restricts their use in structural applications 
such as automobile sector16. Hence, enhancing 
the strength while maintaining ductility of HEA 
is a crucial factor to become potential structural 
material to compete with conventionally used 
materials in automobile and other sectors.

The HEA are synthesized conventionally 
through various routes such as melting and cast-
ing17, powder metallurgy by mechanical alloying 
(MA) and sintering18–21, surface deposition22, etc. 
Techniques like additive manufacturing (AM)23 
and carbothermal shock synthesis (CTS)24 have 
also been utilized widely in recent times. The 
HEA manufactured through these routes have 
inherent limitations including gas porosity, 
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shrinkage porosity, un-melted particles and det-
rimental microstructural features, etc.25–27. These 
defects in the specimens create inhomogene-
ous stress distribution which limit the optimum 
strength–ductility combination. The strength–
ductility synergy is quantified as a product of 
strength and ductility (PSD in GPa × %) defined 
elsewhere28. Since the strength and ductility spec-
ifications for many room-temperature structural 
applications are critical, the synthesized HEA 
need to be engineered further to imbibe the desir-
able properties.

Thermo-mechanical processing (TMP) con-
stitutes of a series of plastic deformation and 
thermal operations to tune the microstructure 
consequentially enhancing the strength–ductility 
synergy of as-synthesized components. The plas-
tic deformation processes, like rolling, combined 
with a post-deformation annealing constitute the 
most commonly used sequence of a TMP sched-
ule. A combination of rolling and heat treatment 
process (RHP) has been effectively utilized for 
aluminium, steel, and titanium alloys for enhanc-
ing room-temperature mechanical proper-
ties29–31. The rolling process, apart from changing 
the shape, is known to strengthen the as-cast or 
PM processed materials through various mecha-
nisms such as dislocation strengthening, grain 
and twin boundary strengthening32,33, etc. A sub-
sequently optimized heat treatment facilitates the 
tailoring of the strength–ductility combination34, 
leading to mechanical properties superior to as-
cast or PM processed specimens.

The schematic Fig.  1 depicts three major 
modes of HEA processing along with key factors 
in individual stages. First step of HEA synthesis 

routes render characteristic microstructural 
features, e.g., type and fraction of phases, grain 
size, etc. All these parameters play a vital role in 
deciding post RHP properties35,36. During sec-
ondary processing, i.e., deformation through 
rolling or HPT, the working temperature along 
with recrystallization temperature governs the 
microstructural evolution. Rolling at various 
temperatures exhibits different strengthening 
mechanisms and hence influences the proper-
ties of HEA37–39. The rolling processes can be 
differentiated based on operating temperature 
which includes cryo-rolling (CR), room-tem-
perature rolling (RTR), hot rolling above the 
recrystallization temperature (HR), and warm 
rolling (WR) (around average temperature of 
hot rolling and RTR). In addition to tempera-
ture, the parameters like amount of total strain, 
strain path, symmetricity of rolling (symmetric/
asymmetric rolling), etc. also play an impor-
tant role in ascertaining the final properties of 
an HEA40–42. During the heat treatment of the 
HEA, the annealing temperature primarily dic-
tates microstructural evolution43. Additionally, 
the duration of annealing44 and heating rate 
to achieve temperature of interest45 also can 
be used to tune the strength–ductility synergy. 
Taken together, there are various parameters 
associated with different stages of TMP which 
decides the enhancement in tensile room-tem-
perature mechanical properties of HEA.

There are a substantial number of journal 
papers on RHP of HEA starting from the year 
2009. Figure  2 highlights the rapid increasing 
trends in number of publications in TMP start-
ing from its inception. Review on evaluation 

Figure  1:  Schematic mentioning the various parameters of thermo-mechanical processing of high 
entropy alloys affecting the final mechanical properties.
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of mechanical properties of HEA through ten-
sile and compressive behaviour has also been 
undertaken46,47. However, any of the reviews 
does not deal with the generic aspects of 
thermo-mechanical processing involving the 
rolling and annealing process. In summary, the 
focus of this review is to establish the role of 
variety of parameters in RHP process.

2 �Strengthening HEA by Rolling
The rolling process in TMP has been effectively 
employed in the strengthening of as-synthesized 
HEA48–53. Figure  3 clearly indicates significant 
strengthening of HEA due to rolling. The com-
positions of HEA, rolling parameters, and per-
centage increase in the strength values after 
rolling have been given in Table  1. The primary 

strengthening mechanisms in HEA operative 
during rolling are associated with increased dislo-
cation density54, twin boundaries37, kink bands40, 
shear bands55, grain refinement56, transforma-
tion-induced plasticity57,58, back stress harden-
ing due to accumulation of dislocations59–61, etc. 
In the following section, the tuning of various 
factors such as pre-rolling microstructural fea-
tures, temperature of rolling, total strain, strain 
path, symmetricity, etc. and their corresponding 
strengthening mechanisms will be discussed.

2.1 � Evolution of Deformed Microstructure 
Based on Phases

The various types of as-synthesized alloys with 
different phases can be classified as: (i) single-
phase alloys: face-centered cubic (FCC)50, body 
centered cubic (BCC)40, B2 phase62, etc.; (ii) 
multiphase alloys: FCC + BCC63, FCC + hexago-
nal closed packed (HCP)64, L12 + B265, etc. The 
deformation mechanisms active in these two 
types of alloys leading to strengthening will be 
elaborated in this section.

2.1.1 �Single‑Phase Alloys
During the initial stages, the single-phase FCC 
HEA undergo strengthening through dislocation 
activities leading to cell formation66–68, deforma-
tion twins69, microbands70,71, shear bands due to 
heavy deformation72,73, etc. At constant deforma-
tion temperature, the deformation of FCC HEA 
is primarily controlled by stacking fault energy 
(SFE)74. The nucleation of deformation twins is 
directly proportional to SFE75,76. Hence, the HEA 
with lower SFE exhibit deformation twinning as 
their deformation mechanism77. Additionally, 
with reduction in the SFE by tuning of composi-
tion of alloy, the deformation twin thickness can 
also be reduced76. This reduction of twin thick-
ness will provide higher strengthening in FCC 
HEA78. In contrast, the increase in SFE (lower-
ing the distance between Shockley partials) leads 
to easier cross-slip. Hence, at higher SFE values, 
microband formation was found to be dominant 
mechanism for deformation79. The deformation 
mechanism changes from twinning to microband 
formation with increasing nitrogen content70. 
The SFE increases by alloying elements like nitro-
gen leading to change in the deformation mecha-
nism80. To sum up, in the initial and intermediate 
stages of deformation, the microstructural evolu-
tion and strengthening in FCC HEA is influenced 
by SFE.

Figure 2:  Graph indicating the number of journal 
publications on rolling annealing process of high 
entropy alloys.

Figure  3:  Ultimate tensile strength vs. yield 
strength graph implying the significant strength‑
ening after rolling.



4

R. Sabban et al.

1 3 J. Indian Inst. Sci.| VOL xxx:x | xxx–xxx 2022 | journal.iisc.ernet.in

Ta
b

le
 1

: 
St

re
ng

th
en

in
g 

of
 a

s-
sy

nt
he

si
ze

d 
hi

gh
 e

nt
ro

py
 a

llo
ys

 a
fte

r r
ol

lin
g.

C
om

po
si

tio
n 

of
 H

EA
N

o.
 

of
 p

ha
se

s
St

ru
ct

ur
e 

of
 p

ha
se

s 
pr

es
en

t

Ro
lli

ng
 d

et
ai

ls
 (r

ol
lin

g 
te

m
pe

ra
tu

re
/r

ed
uc

tio
n 

in
 t

hi
ck

ne
ss

)

Y
ie

ld
 

st
re

ng
th

 
(M

Pa
)

U
lti

m
at

e 
te

ns
ile

 s
tr

en
gt

h 
(M

Pa
)

In
cr

ea
se

 in
 y

ie
ld

 s
tr

en
gt

h 
(%

)
In

cr
ea

se
 in

 u
lti

m
at

e 
te

ns
ile

 
st

re
ng

th
 (%

)

Re
fe

re
nc

e
B

ef
o

re
 r

o
lli

n
g

A
ft

er
 r

o
lli

n
g

B
ef

o
re

 r
o

lli
n

g
A

ft
er

 r
o

lli
n

g

A
l 0

.1
C

oC
rF

eN
i

Si
ng

le
FC

C
RT

R/
 7

5%
20

0
11

98
85

0
12

30
49

9
45

13
7

A
l 0

.2
5C

oC
rF

eN
i

Si
ng

le
FC

C
RT

R/
 9

0%
12

6
12

92
49

1
14

81
92

5
20

2
48

A
l 0

.2
5C

oC
rF

eN
i

Si
ng

le
FC

C
RT

R 
/ 6

0%
17

3
10

80
42

8
10

88
52

4
15

4
50

A
l 0

.2
5C

oC
rF

eN
i

Si
ng

le
FC

C
RT

R 
/ 6

0%
26

0
11

50
64

4
11

60
34

2
80

50

A
l 0

.2
5C

oC
rF

e 1
.2

5N
i 1

.2
5

Si
ng

le
FC

C
RT

R/
 8

0%
92

61
6

43
3

70
2

57
0

62
39

A
l 0

.3
Fe

C
oC

rN
iM

n
Si

ng
le

FC
C

RT
R 

/ 9
6%

27
5

14
59

44
3

15
34

43
1

24
6

51

A
l 0

.3
C

oC
rF

eN
i

Si
ng

le
FC

C
RT

R/
 7

0%
20

7
42

0
33

5
13

25
10

3
29

6
41

A
l 0

.3
C

oC
rF

eN
i

Si
ng

le
FC

C
RT

R/
 9

0%
17

5
12

83
32

5
13

80
63

3
32

5
16

9

A
l 0

.4
5C

oC
rF

eN
i

Si
ng

le
FC

C
RT

R 
/ 7

0%
20

9
11

00
60

8
11

37
42

6
87

52

A
l 0

.5
C

oC
rF

eN
i

D
ua

l
FC

C
 +

 B
C

C
RT

R/
 5

0%
40

2
13

96
56

8
14

61
24

7
15

7
43

A
l 0

.5
C

oC
rF

eN
i

D
ua

l
FC

C
 +

 B
C

C
RT

R/
 2

0%
40

2
75

5
61

6
84

2
88

37
21

A
l 0

.5
C

rC
uF

eN
i 2

Si
ng

le
FC

C
RT

R/
 5

0%
40

2
11

32
56

0
12

00
18

2
11

4
15

4

A
lC

oC
rF

eN
i 2

.1
D

ua
l

L1
2 +

 B
2

C
ry

o-
ro

lli
ng

/ 4
5%

60
0

16
00

11
00

17
50

16
7

59
55

A
lC

oC
rF

eN
i 2

.1
D

ua
l

L1
2 +

 B
2

C
ry

o-
ro

lli
ng

 +
 w

ar
m

 
ro

lli
ng

/ 9
0%

60
0

19
00

11
00

20
00

21
7

82
55

A
lC

oC
rF

eN
i 2

.1
D

ua
l

L1
2 +

 B
2

C
ry

o-
ro

lli
ng

/ 9
0%

61
5

16
99

11
05

17
73

17
6

60
65

A
lC

oC
rF

eN
i 2

.1
D

ua
l

L1
2 +

 B
2

RT
R/

 9
0%

62
0

16
25

10
50

18
00

16
2

71
16

8

A
lC

oC
rF

eN
i 2

.1
D

ua
l

L1
2 +

 B
2

W
ar

m
 r

ol
lin

g/
 9

0%
51

0
13

90
10

09
19

40
17

3
92

41

A
lC

oC
rF

eN
i 2

.1
D

ua
l

L1
2 +

 B
2

RT
R/

 9
0%

61
5

17
31

11
05

18
13

18
1

64
22

A
l 3

.4
C

0.
7C

oC
rF

eN
iM

n
Si

ng
le

FC
C

RT
R/

 8
0%

21
0

13
10

44
5

15
00

52
4

23
7

11
1

C
oC

rF
eM

nN
i

Si
ng

le
FC

C
RT

R 
/ 6

0%
18

4
85

4
34

6
90

1
36

4
16

0
70

1 
at

%
 N

- 
C

oC
rF

eM
nN

i
Si

ng
le

FC
C

RT
R 

/ 6
0%

28
0

10
43

55
4

10
68

27
3

93
70

C
rM

nF
eC

oN
i

Si
ng

le
FC

C
RT

R 
/ 9

0%
21

0
11

50
46

3
11

52
44

8
14

9
14

0

C
rM

nF
eC

oN
i

Si
ng

le
FC

C
RT

R/
 5

0%
21

0
12

50
46

3
13

27
49

5
18

7
14

0



5

Strength–Ductility Synergy in High Entropy Alloys

1 3J. Indian Inst. Sci. | VOL xxx:x | xxx–xxx 2022 | journal.iisc.ernet.in

C
om

po
si

tio
n 

of
 H

EA
N

o.
 

of
 p

ha
se

s
St

ru
ct

ur
e 

of
 p

ha
se

s 
pr

es
en

t

Ro
lli

ng
 d

et
ai

ls
 (r

ol
lin

g 
te

m
pe

ra
tu

re
/r

ed
uc

tio
n 

in
 t

hi
ck

ne
ss

)

Y
ie

ld
 

st
re

ng
th

 
(M

Pa
)

U
lti

m
at

e 
te

ns
ile

 s
tr

en
gt

h 
(M

Pa
)

In
cr

ea
se

 in
 y

ie
ld

 s
tr

en
gt

h 
(%

)
In

cr
ea

se
 in

 u
lti

m
at

e 
te

ns
ile

 
st

re
ng

th
 (%

)

Re
fe

re
nc

e
B

ef
o

re
 r

o
lli

n
g

A
ft

er
 r

o
lli

n
g

B
ef

o
re

 r
o

lli
n

g
A

ft
er

 r
o

lli
n

g

0.
69

 a
t%

 C
-C

oC
rF

eN
iM

n
Si

ng
le

FC
C

RT
R 

/ 8
0%

27
5

13
10

58
0

15
00

37
6

15
9

13
6

Fe
C

oC
rN

iM
n-

1 
at

 %
 C

Si
ng

le
FC

C
RT

R/
 8

0%
40

0
13

60
75

0
14

70
24

0
96

79

C
oC

rF
eN

iM
n

Si
ng

le
FC

C
RT

R/
 8

0%
16

0
11

20
44

5
11

75
60

0
16

4
42

Fe
C

rC
oM

nN
i

Si
ng

le
FC

C
RT

R 
/ 9

0%
21

0
11

50
44

7
11

64
44

8
16

0
14

0

C
oC

rF
eN

iM
o 0

.2
Si

ng
le

FC
C

RT
R/

 8
0%

28
0

13
92

61
0

15
89

39
7

16
0

17
0

C
oC

rF
eN

iN
b 0

.1
Si

ng
le

FC
C

RT
R/

 2
5%

25
0

65
0

47
5

69
4

16
0

46
92

C
oC

rF
eN

i2
.1

N
b 0

.2
D

ua
l

FC
C

 +
 La

ve
s

C
ry

o-
ro

lli
ng

/ 9
0%

17
8

11
50

59
8

17
58

54
6

19
4

49

C
oC

rF
eM

nN
i

Si
ng

le
FC

C
RT

R/
 8

0%
35

6
12

92
69

0
13

52
26

3
96

13
2

C
oC

rF
eN

iN
b 0

.1
Si

ng
le

FC
C

C
ry

o-
ro

lli
ng

/ 2
5%

25
0

60
0

47
5

68
5

14
0

44
92

C
oC

rF
eN

iM
n

Si
ng

le
FC

C
RT

R/
 8

0%
18

0
10

59
44

5
11

76
48

8
16

4
37

C
oC

rF
eN

iM
n

Si
ng

le
FC

C
C

ry
o-

ro
lli

ng
/ 8

0%
18

0
13

98
44

5
15

04
67

7
23

8
37

Fe
C

rC
uM

nN
i

Si
ng

le
FC

C
C

ry
o-

ro
lli

ng
/ 8

5%
33

6
11

76
49

9
12

94
25

0
15

9
10

8

Fe
28

.2
N

i 1
8.

8M
n 3

2.
9A

l 1
4.

1C
r 6

Si
ng

le
FC

C
RT

R/
 6

5%
67

9
14

42
93

1
15

21
11

2
63

37

C
oC

rF
eN

i 2
.1

N
b 0

.2
D

ua
l

FC
C

 +
 La

ve
s

RT
R/

90
%

16
0

13
80

60
0

15
30

76
3

15
5

60

C
oC

rF
eN

i 2
.1

N
b 0

.4
D

ua
l

FC
C

 +
 La

ve
s

RT
R/

90
%

48
0

15
00

73
0

16
80

21
3

13
0

60

Ta
b

le
 1

: 
(c

on
tin

ue
d)



6

R. Sabban et al.

1 3 J. Indian Inst. Sci.| VOL xxx:x | xxx–xxx 2022 | journal.iisc.ernet.in

In BCC HEA, the deformation is driven by 
mechanisms such as increase in dislocation den-
sity40, kink bands81, deformation bands82,83, 
microbands84, shear bands40, etc. The misorien-
tation of boundaries was found to be related to 
kink bands40,81,85 after rolling which was lower 
compared to the misorientation of twin bound-
ary in BCC HEA40,81,86. Along with BCC alloys, 
the partially ordered single-phase B2 also deforms 
primarily by dislocation microbands formation62. 
The formation of microbands in B2 has been 
attributed to the preference of deformation via 
planar slip over other mechanisms71, wherein the 
leading Shockley partially destroys the barrier for 
ordering of B2 phase making it easy for trailing 
Shockley partial to continue planar slip leading 
to formation of microbands62,87. At larger plastic 
strains, the shear band formation is the dominant 
mechanism for most of the HEAs irrespective of 
initial phase40,72. The shear band formation rep-
resents plastic instability88 and occurs irrespective 
of crystallography of sample at sufficiently larger 
rolling deformation89. Taken together, there are 
variations in deformation mechanisms possible 
in single phases based on type of phase and SFE.

2.2 � Multiphase Alloys
The deformation mechanisms of multiphase 
alloys include most of the mechanisms applica-
ble to single-phase alloys, such as dislocation cell 
formation43,60, deformation twinning73,90, shear 
banding65,73, etc. In addition, the multiphase 
alloys have additional strengthening mechanisms 
such as back stress strengthening due to accumu-
lation of dislocations at phase boundaries59–61, 
strain-induced martensitic transformation73,90, 
etc. The major strain partitions to soft FCC phase 
compared to hard phases like carbides, ordered 
phase B2, etc. For maintaining continuity, the 
geometrically necessary dislocations (GNDs) 
participate in the deformation, which provides 
additional strengthening in dual-phase alloys 
compared to single-phase alloys59. The mecha-
nism of strain-induced FCC-to-HCP martensite 
transformation in the dual-phase alloy contain-
ing FCC and thermally stabilized HCP phase has 
also been reported64. The stacking fault gener-
ated in the initial stages of deformation in FCC 
phase acts as nuclei for transformation of FCC 
phase to HCP martensite91. Hence, in general, the 
strengthening effect is higher in dual-phase HEA 
compared to single-phase HEA.

2.3 � Development of Microstructure 
at Different Rolling Temperatures

As described in previous section, the active 
strengthening mechanisms in HEA are dislo-
cation activity50, microbands71, stacking fault 
(SF)92, deformation twinning70, shear bands93, 
etc. depending on pre-rolling phases and SFE. 
The selection and evolution of any of the above-
mentioned mechanisms, however, depends on 
the rolling temperature37. During cryo-rolling 
(CR) and room-temperature rolling (RTR), the 
evolution of microstructure is governed by dis-
location activity and twinning depending on SFE 
of HEA. The SFE of the conventional alloys and 
HEA is directly proportional to temperature92,94. 
Hence, during CR and RTR, the microstructural 
evolution will change according to SFE. How-
ever, at higher temperature regime (near or above 
the recrystallization temperature of alloy), the 
microstructural changes will get affected by ther-
mal activation. The effect of rolling temperature 
at elevated temperatures on properties can be 
explained through change in Zener–Hollomon 
(Z–H) parameter95. At constant strain rate, low-
ering the rolling temperature increases the Z–H 
parameter and the strength thereof. In this sec-
tion, the difference in mechanisms of strengthen-
ing and their effect on properties after rolling at 
different temperatures will be discussed.

2.3.1 �Deformation at  Room Temperature 
and Cryogenic Temperature

The difference in the mechanical properties with 
change in the rolling temperature in the tem-
perature regime spanning from room tempera-
ture to cryogenic temperature is shown in Fig. 4. 
Figure  4a describes the difference in hardening 
at two rolling temperatures of CoCrFeNiMo0.15 
HEA71 and Fig. 4b highlights the effect of rolling 
temperature on strengthening in CoCrFeNiMn 
alloy37. The cryo-rolled (CR) specimens exhib-
ited more strengthening than room-temperature 
rolled (RTR) specimens. The difference between 
RTR and CR is that the microstructural evolu-
tion kinetics is faster in the latter37,71,92,96. The 
initial stages of deformation in RTR are domi-
nated by dislocation activity and SFs, and with 
increasing strain, the deformation twins become 
dominant. The SFE of the studied alloy is low, 
and hence, deformation twining is favorable over 
microbands at room temperature75. Compared 
to RTR specimens the activation of deformation 
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twinning for CR specimens happened at earlier 
stages. This is explained with the fact that the 
SFE at liquid nitrogen temperature is further less 
compared to SFE at room temperature92. With 
increasing strain in CR, the multiple twin sys-
tems get activated and distortion of nanotwins 
occurs later. The shear bands were also found 
post CR after imparting high strain37,71,96. The 
enhanced dislocation density was also observed 
in the conventional FCC alloys after deforming 
at cryo-temperature in comparison with room 
temperature97. The deformation-driven FCC-to-
HCP transformation-induced plasticity (TRIP) 
was observed after CR. The SFs present in the 
initial stages acted as nucleating sites for FCC-
to-HCP transformation64. The texture after CR 
and RTR was brass-type texture which is typical 
for low SFE material93. Hence, there is little role 
of texture in additional strengthening after CR 
than RTR. Hence, the HEA exhibits the enhanced 
strengthening at cryo-temperature compared to 
room temperature (Fig. 4a, b) due to higher dis-
location density, intersection of twins from non-
parallel systems, TRIP, and more shear banding.

2.4 � Warm and Hot Deformation
The influence of rolling in high-temperature 
regime at intermediate as well as at high tem-
peratures, namely warm rolling (WR)98 and hot 
rolling99–102, has been investigated for HEAs. In 
general, hot working refers to rolling at tempera-
tures above the recrystallization temperature103, 
while warm rolling is performed at intermedi-
ate temperatures of cold and hot rolling55. For 
the HEAs that are less workable, hot working 
is preferred35. Another associated attribute of 

deformation at high temperature is associate 
control of microstructures55,100. The hot roll-
ing of HEAs involves dynamic recovery, dynamic 
recrystallization, grain growth, etc. as other 
micro-mechanisms like phase evolution and 
transformation depending on rolling tempera-
ture100,104. Mostly recovery and partial recrystal-
lization is prevalent in the FCC HEA rolled at 
temperatures below recrystallization tempera-
ture of HEA100. This recovery-to-recrystalliza-
tion ratio is strongly dependent on temperature 
and SFE of the material. Recovery is dominant at 
lower rolling temperatures and in high SFE alloys, 
while at higher rolling temperatures and for low 
SFE alloys, recrystallization is more prevalent105. 
For HEAs, increased degree of recrystallization 
is observed at higher rolling temperatures100. For 
much higher rolling temperatures, grain growth 
has also been observed100 due to increased mobil-
ity of grain boundary at higher temperature105. 
The microstructural transformation through any 
of these routes led to specific strength–ductility 
synergy in the HEA.

The deformation mechanisms during the 
warm rolling of AlCoCrFeNi2.1 eutectic HEA 
were found to be function of rolling tempera-
ture55. The shear banding and disordering of L12 
phase was influenced by rolling temperature. In 
the dual-phase (FCC + BCC) Al0.5CoCrFeMn 
HEA, the FCC phase underwent deformation, 
while the harder BCC phase underwent grain 
fragmentation instead of deformation35. Another 
influence of temperature was noticed in terms of 
propensity of twinning. Twinning was reported 
to be suppressed with increase in temperature in 
warm working regime due to increase in SFE in 
the HEAs that exhibit twinning induced plasticity 
(TWIP)106.

Figure 4:  The different amount of strengthening achieved through rolling at cryo and room temperature in 
high entropy alloys: a CoCrFeNiMo0.15

71; b CoCrFeNiMn37.
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In general, the strength–ductility combination 
has been tailored by a combination of deforma-
tion in multiple temperature domains, for exam-
ple, a combination of cryo-rolling and warm 
rolling. This combination results in generation 
of heterogeneous microstructure to enhance the 
strength–ductility synergy53. Such a processing 
is sometimes referred to as hybrid processing 
or hybrid rolling. To summarize, a broad range 
of micro-mechanisms act to play, depending 
on the working temperature. Hence, by varying 
the rolling temperature, hence by tailoring the 
microstructure optimally, the strength–ductility 
combination can be fine-tuned.

3 �Total Plastic Strain
The evolution of microstructure in various HEA 
with increasing rolling reductions (plastic strains) 
and its effect on mechanical properties thereof 
has been evaluated extensively107–109. The evolu-
tion of strength after cold rolling in FCC HEA 
Al0.25CoCrFeNi with increasing total plastic strain 
Fig.  548. The increase in % thickness reduction 
led to increase in strength at the cost of ductil-
ity (Fig.  5a). The strain hardening analysis has 
been carried out on results presented in Fig.  5a. 
The strain hardening regime of stress–strain 
curve (between yield strength and ultimate ten-
sile strength) was considered for the calculations 
of specimens rolled to different reductions. The 
Hollomon analysis plot (ln (true uniform plastic 
stress) vs. ln (true uniform plastic strain)) after 
various rolling reductions is presented in Fig. 5b. 
The details of the Hollomon calculation can be 
found elsewhere110. The slope of the curve after 

applying linear regression (R2 > 0.8) is the strain 
hardening exponent (n). Figure 5b highlights the 
decrease in ‘n’ (early necking) after increasing the 
rolling reduction. Similar behavior was observed 
for some HEA111,112 and conventional aluminium 
alloys110. The decrease in strain hardening capac-
ity in Al0.25CoCrFeNi HEA with increasing rolling 
reduction can be explained based on deformation 
mechanisms. The mechanisms of deformation in 
various phases are different at different tempera-
tures, and dislocation activity and cell formation 
are the dominant mechanism of deformation in 
the initial stages43,60. As the deformation pro-
ceeds, the multiplication of dislocations and 
sub-grain size refinement take place which makes 
it difficult for further strain hardening and non-
uniform deformation leads to necking110. Taken 
together, the strength evolution as a function of 
plastic strain has been observed and increased 
strengthening can be achieved with increasing 
plastic strain.

4 �Tuning the Strain Path
The effect of varying strain path during rolling 
on microstructure evolution and final properties 
in the conventional alloys containing different 
phases has been well studied113–115. The elongated 
grain structure is developed by virtue of unidirec-
tional rolling (UDR), whereas the lamellar struc-
ture fragmentation occurs by cross rolling. There 
are a few reports on difference in microstruc-
ture due to strain path change in HEA41,117,118. 
The variation in deformation microstructure 
gives rise to difference in the mechanical prop-
erties post-annealing. In the case of the HEA 

Figure 5:  a The engineering stress–strain curve of Al0.25CoCrFeNi high entropy alloy before and after var‑
ious reduction in thickness48; b the corresponding ln (true uniform plastic stress) vs. ln (true uniform plas‑
tic strain) plot for strain hardening analysis with values of strain hardening exponent(n) mentioned.
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AlCoCrFeNi2.1, the UDR sample resulted in het-
erogeneous microstructure with lamellar and 
recrystallized grains in contrast to cross-rolled 
specimens which exhibited duplex recrystallized 
grains. Subgrains are well developed in UDR 
specimen, whereas it gets distorted during cross 
rolling. The destabilization of dislocation struc-
ture during cross rolling is also reported in the 
case of cold rolling of CoCrFeMnNi FCC alloy117. 
This destabilization effect has also been reported 
in the conventional FCC alloys114,119, and the dis-
tortion in development of misorientation pro-
vides lesser nucleating sites for recrystallization 
leading to coarse grain size in cross-rolled speci-
mens in comparison to UDR117. The difference 
in the grain size affects the strength–ductility 
synergy120. The increase in the volume fraction 
of intersecting twins in low SFE HEA after cross 
rolling and intermittent annealing due to destabi-
lization of substructure has also been reported118. 
Therefore, it is clear that changing the strain path 
during rolling could enable the microstructure 
and strength–ductility combination to be tuned.

5 �Symmetricity of Rolling
The symmetricity of rolling can be varied by 
varying the (a) diameter of the rolls, (b) friction 
conditions at the roll and sample surface, and (c) 
the speed of the roll121,122. Along with plain strain 
compressive stress (as in conventional rolling), 
asymmetric rolling imparts additional shear stress 
during deformation122. The equivalent strains in 
asymmetric rolling were also found to be slightly 
higher compared to the conventional rolling123. 
Researchers have utilized asymmetric rolling 
for refining the microstructure and enhancing 
the mechanical properties of conventional 

aluminium, magnesium alloys123–125, etc. The 
process of asymmetric rolling (ASR) at room 
temperature using different roll speeds (speed 
ratio 1.5) for FCC CoCrFeMnNi alloy was also 
performed42. Asymmetrical rolling strengthened 
the HEA by 96% more in comparison with sym-
metric rolling (SR) (Fig.  6). As discussed earlier, 
the deformation mechanisms dominant in FCC 
HEA are dislocation cell formation, deformation 
twinning, shear bands, etc.43,65,90. The CoCrF-
eMnNi alloy exhibited a higher number of dislo-
cation cell formation in ASR compared with SR 
specimens. The asymmetrically rolled FCC met-
als like aluminium exhibited higher percentage of 
low-angle grain boundaries (LAGBs) converted 
to high-angle grain boundaries (HAGBs) due to 
higher dislocation activity. This conversion was 
promoted by additional shear stress123. In addi-
tion to dislocation activity, SR specimens showed 
parallel set of deformation twins in contrast 
to intersecting twins in ASR specimens. These 
intersecting twins exhibit additional hardening 
in ASR specimens126. Higher volume fraction of 
shear bands formation was seen in ASR as com-
pared to conventionally rolled specimens. The 
complex strain distribution in ASR is reported 
to be the plausible reason for higher fraction of 
intersecting twins and shear bands124,126. Owing 
to the above-mentioned discussion, ASR displays 
additional strengthening in comparison with SR 
specimens. Similar kind of additional strengthen-
ing in FCC HEA has been reported with different 
roll speeds127. The dislocation density is found 
to be twice in ASR specimens compared to SR. 
Asymmetric rolling is proven to be effective way 
to attain the additional strengthening compared 
to symmetric rolling for HEA.

5.1 � Deformation Texture
The generation of texture during TMP of HEA 
significantly influences the strength of the mate-
rial. Orientation of grains in HEA post TMP is 
decided by the strain path, working temperature, 
and the recrystallization parameters. Texture evo-
lution in HEA post-deformation in HEA is dis-
cussed here based on phases present in the alloy. 
Table. 2 shows the deformation and annealing 
texture components of common HEA.

HEA like Cantor alloy contain typical roll-
ing components post-room-temperature 
rolling (RTR) such as Bs, Cu, cube, and S 
components. The S component strengthens 
up to 80% RTR reduction, beyond which it 
decreases129. The brass component strengthens 
beyond 80% and keeps on increasing till 90% 

Figure  6:  The difference in strengthening with 
symmetric and asymmetric rolling at room tem‑
perature in CoCrFeMnNi alloy42.
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reduction. Slip planes at low RTR reduction 
and fine lamellae with deformation bands co-
existing at high RTR reduction are responsi-
ble for the texture development. The Goss and 
Bs components show up in the FCC phase of 
FeCrCuMnNi in 90% RTR alloy109. Twins pre-
sent in the Cantor alloy promote the transition 
of Cu to brass type of texture to during RTR​126. 
Al0.5CoCrFeNi HEA shows {110} < 112 > and 
{111} < 110 > components on RTR possessing 
FCC with trace BCC phase, which on recrystal-
lization become weak43. Cryo-rolling of Cantor 
alloy shows a similar texture as after cold roll-
ing93. Multistage cross cold rolling of Cantor 
alloy shows stronger Bs component than unidi-
rectional rolled specimen117.

The L12 phase in the eutectic HEA 
AlFeCrCoNi2.1 possesses Bs type of tex-
ture post-warm rolling along with α-fibre 
(Goss, Bs, G/B); whereas the B2 phase shows 
{112} < 110 > type of texture along with 
RD||110 and ND||111 fibres post-warm roll-
ing130. Different strain paths imparted at cryo-
temperature on EHEA generate Bs along with 
Goss, Rt-Goss in L12 phase, and {001} < 110 > in 
B2 phase after multistep cross rolling41. HfZ-
rTiTaNb HEA with BCC phase, when cold 
rolled, exhibits strong ND fibre (ND// < 111 >), 
and RD fibre (RD// < 110 >) along with cube 
and Rt-cube components131.

6 �Post‑rolling Heat Treatments: Annealing
Rolling leads to strengthening of HEAs, compro-
mising on the ductility factor132,133. The strength–
ductility combination has been optimized by 
designing different heat treatment regimens 
post-rolling, which is plotted and highlighted in 
Fig. 7128,134,135. The composition of the alloys with 
respective RHP and properties are presented in 
Table  3. The quantification of strength–ductility 
synergy which is realised by the parameter PSD 
(GPa × %) displays that RHP has significantly 
enhanced the strength–ductility combination of 
as-synthesized HEA (Table 3). This improvement 
is dependent on the cascade of events taking 

Table 2:  Deformation and annealing texture components of HEA.

Rolling 
condi-
tions Composition Phase Deformation texture Recrystallization texture

Recrystallization 
temperature (°C) Ref. no

RTR​ CoFeNi FCC Bs, S Cube 700–1000 38

CoCrFeNi S, Bs Random

CoCrFeMnNi Bs Random

RTR​ CoCrFeMnNi FCC Bs, Cu, cube, S K{142} < 2 11>, M{13 6 
25} < 20 15 14>

650–1000 129

WR AlFeCrCoNi2.1 L12 Bs, G, G/B Bs, G, G/B 800–1200 130

B2 {112} < 110 >  {112} < 110 >  800

{111} < 110 >  1200

CR AlFeCrCoNi2.1 L12 Bs, Goss, Rt-Goss Bs, Goss, Rt-Goss 800–1200 49

B2 {001} < 110 >  ND fibre

RTR​ HfZrTiTaNb BCC ND, RD fibre {111} < 110 >  1400 131

Figure  7:  Yield strength vs. product of ultimate 
tensile strength and ductility graph highlighting 
the enhancement in strength–ductility synergy 
through RHP of high entropy.
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place (microstructural evolution) during anneal-
ing heat treatments, which depends on various 
parameters such as annealing temperature56, 
annealing time136, heating rate during anneal-
ing45, etc. In this section, the role of various 
annealing parameters in microstructure evolu-
tion will be discussed in detail.

6.1 � Annealing Temperature
The different mechanisms of microstructure 
evolution during heat treatments reported in 
literature are as follows: recovery126,137, pre-
cipitation138,139, recrystallization140–142, grain 
growth143–145, and annealing twins146,147, etc. The 
mechanism in play triggering the microstructural 
change for HEA is dictated by annealing tem-
perature148. The strong dependence on annealing 
temperature can be attributed to microstruc-
tural changes occurring, which in turn is strongly 
influenced by diffusion149 which is exponentially 
related (Arrhenius dependence) to tempera-
ture150. Before annealing, rolling enhances the 
yield strength of FCC HEA manifold with con-
siderable reduction in ductility148. Hence, the 
product of strength and ductility value reduced 
marginally, as shown in Fig.  8a148. However, 
annealing at different temperatures increases the 
PSD parameter significantly in comparison to 
both pre- and post-rolled HEA. Annealing ren-
ders higher yield strength values compared to 
pre-rolled status of HEA (Fig. 8a). The plausible 
reasons behind the enhanced mechanical proper-
ties post-annealing at different temperatures will 
be discussed vis-à-vis microstructural changes.

6.1.1 �Recovery
The driving force for recovery during annealing 
post-deformation (static recovery) is the stored 
energy in the rolled specimens151. The static 
recovery in HEA involves steps such as dislocation 
interaction leading to formation of dislocation 
cells68, reduction of dislocation density inside 
cell152–154, intensification of texture126, forma-
tion of subgrains81, etc. The recovery temperature 
regime is dependent on compositional complex-
ity and SFE of the material155, etc. The higher is 
the SFE, more is the recovery as discussed earlier 
in hot rolling section. Static recovery is found to 
be dominant for FCC72,98,137, BCC81, and dual-
phase153,156 HEA after annealing below recrys-
tallization temperature. The activation energy 
required for static recovery in conventional alloys 
is same as that of dislocation annihilation by 
climb and cross-slip, which is lower compared 
to that of recrystallization157,158. In terms of 

mechanical property evolution during recovery, 
the decrease in hardness of rolled FCC HEA is 
insignificant72,148,156, whereas increase in ductility 
is notable137. The strength decrease during recov-
ery was reported to be logarithmic and not as 
drastic as recrystallization159. This is the probable 
reason for increase in PSD after annealing below 
recrystallization temperatures of HEA (Fig. 8a).

6.1.2 �Recrystallization
The mechanism of recrystallization involves the 
migration of HAGBs105. Hence, recrystalliza-
tion needs higher thermal energy compared to 
recovery157,158. Above the recrystallization tem-
perature, the recrystallization starts to dominate 
recovery. Similarly, the recrystallized fraction 
increased with increase in temperature in dif-
ferent HEA having various phases62,72,81,160 pos-
sibly due to increase in HAGBs’ mobility161. The 
HAGBs’ mobility impeding elements such as car-
bon increase the recrystallization onset tempera-
ture162. The recrystallization activation energy in 
FCC HEA (549 kJ/mol)163 is significantly higher 
compared to high manganese steel (230  kJ/
mol)164 and TWIP steel (229  kJ/mol)165 due to 
precipitates pinning the grain boundaries in 
addition to solute drag effect. Hence, the nuclea-
tion of recrystallization in HEA requires higher 
annealing temperature compared to the conven-
tional high-performance alloys. The recrystalliza-
tion nucleation sources in HEA are deformation 
bands52, grain boundaries43, shear bands98, sec-
ond-phase particles160, etc. The regions such as 
deformation bands, shear bands, etc. exhibited 
recrystallization initialization due to large driving 
force of stored energy52,98. The particle stimulated 
nucleation (PSN) is also prevalent in multiphase 
HEA. The harder phase deform less compared to 
softer phase and dislocation pile-up at the phase 
interface causes formation of deformation zone 
leading to nucleation of recrystallized grains160. 
The ductility is enhanced after recrystallization, 
and hence, the PSD value also gets enhanced 
with annealing for various HEA140,166–169 which is 
shown in Fig. 8a148.

6.1.3 �Grain Growth Inhibition
As the HEA gets fully recrystallized, the grain 
growth starts dominating significantly at higher 
annealing temperatures compared to recrystalli-
zation temperature152. The excessive grain growth 
can deteriorate the strength of HEA162. The strat-
egy of controlled precipitation in single-phase 
HEA is effectively employed in HEA to inhibit 
the excessive grain growth significantly166. The 
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calculation of phase diagrams (CALPHAD) is 
used as tool to optimally tune the precipitation 
depending on annealing temperatures61,170. This 
temperature has a significant role in deciding the 
size67,171, distribution167, and volume fraction of 
precipitates139,172. With increase in the annealing 
temperature, the coarsening of precipitates occurs 
by Oswald ripening mechanism166. Along with 
coarsening of precipitates, the volume fraction of 
precipitates reduces with increase in the anneal-
ing temperature172. Hence, annealing temperature 
plays a vital role in optimizing the precipitation 
and controlling grain growth thereof in single-
phase HEA. Similar effect of grain boundary 
pinning is observed in multiphase alloys where 
harder phase inhibits the grain growth35,166,173. 
The volume fraction of harder second phase 
decreases with increase in annealing temperature. 
Hence, grain growth dominates with increasing 
annealing temperature35,173. In addition to this, 
the annealing twin fraction varies proportionally 
to grain size143,146, and hence, annealing twinning 
increases as annealing temperature rises142,173. 
These microstructural changes result in higher 
activation energy for grain growth in HEA com-
pared to the conventional alloys163. The yield 
strength and PSD are also higher than pre-rolling 
HEA even after annealing at temperatures signifi-
cantly higher than recrystallization temperature 
(Fig.  8a). The excessive grain growth has been 
successfully inhibited with precipitates in single-
phase HEA or with harder phase in multiphase 
alloys and the strength ductility synergy has been 
enhanced compared with pre-rolling HEA.

6.2 � Annealing Time
After the microstructural evolution mecha-
nism is ascertained by the annealing tempera-
ture, the microstructure can be tailored by 
varying the annealing time to enhance the PSD 
further149,172,174,175. The increasing trend in 
strength–ductility combination with increas-
ing annealing time with respect to pre-rolled 
specimens was observed in Al0.5CoCrCuFeNi 
HEA176,177 (Fig.  8b). The specimens heat treated 
for different times exhibit higher yield strength 
values in comparison with pre-rolled HEA 
(Fig.  8b). The enhancement in the properties in 
relation to change in the microstructural features 
will be elaborated here.

The recrystallization kinetics in HEA is for-
mulated with Johnson–Mehl–Avrami–Kolmogo-
rov (JMAK) equation160. The recrystallization 
kinetics in HEA is slower90 compared to other 
conventional high-performance alloys such as 
high manganese steel164, TWIP steel178, micro-
alloyed steel179 etc. The sluggish diffusion, severe 
lattice distortion effect and precipitates in HEA, 
results in delaying the recrystallization6,90,163. The 
sluggish diffusion renders restrictions on HAGBs’ 
movement for recrystallization90. The severe lat-
tice distortion leads to generation of local con-
centration fluctuation (LCF) regions which 
restricts the dislocation motion during the sof-
tening90. The precipitates formed during anneal-
ing in FCC HEA impede the mobility of HAGBs, 
and hence, the recrystallization requires higher 
thermal energy to occur163.

The evolution of precipitates in HEA with 
increase in annealing time at particular tempera-
ture has been studied extensively134,175. The pre-
cipitate growth exponent (n) reported in various 

Figure  8:  Enhancement in product of ultimate tensile strength and ductility (PSD in GPa × %) for high 
entropy alloys: a FeCoCrNiMn-0.6 at % carbon FCC alloy; annealed for 1 h at different temperatures148; b 
Al0.5CoCrCuFeNi FCC alloy; annealed at 900 °C for various time176.
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HEA is 3148,169,180. The significance of n = 3 lies in 
the fact that the coarsening of precipitates is via 
Oswald ripening mechanism166 and volume dif-
fusion82,148. The volume fraction of precipitates 
remains constant up to a specific annealing time 
and reduces drastically with further increase in 
the annealing time172. The grain boundary pre-
cipitates are stable, but the precipitates inside 
the grain start to dissolve in the matrix lead-
ing to overall decrease in volume fraction of 
precipitates169.

The precipitates also slow down the kinetics 
of grain growth in FCC136,169, BCC81,145, and mul-
tiphase HEA166,180. The grain growth is described 
with modified Zener–Smith model (Z–S) model 
describing the pinning pressure exerted by 
the precipitates to restrict the grain growth169. 
Abnormal grain growth is also observed in FCC 
HEA due to heterogeneous distribution of pre-
cipitates in the initial stages of annealing181. 
Hence, the discussed microstructural evolution 
leads to achieving higher PSD values compared to 
pre-rolled HEA.

6.3 � Heating Rate
The heating rate to reach annealing temperature 
also decides the microstructural evolution dur-
ing annealing182 and mechanical properties of 
conventional alloys183. The difference in grain size 
after annealing due to variation of heating rate 
in FCC HEA is represented in Fig.  945. At high 
heating rates, HEA specimens exhibited lower 
grain size at two different annealing times than a 
lower heating rate (0.013 °C/s) of HEA specimens 
(Fig. 9). In lower heating rate specimens, the early 

nucleation and growth of recrystallized grains 
at preferred sites takes place45,184. Hence, larger 
grain size is achieved in low heating rate com-
pared to high heating rate. This difference in final 
grain size leads to difference in the yield strength 
according to Hall–Petch relationship162. Hence, 
high heating rate achieves better yield strength 
and PSD compared to low heating rate183.

6.4 � Recrystallization Texture
The annealing of ternary medium entropy 
alloy leads to a strong cube recrystallization 
texture, similar to high SFE alloys. Quater-
nary and quinary medium entropy alloys retain 
some deformed texture components indicat-
ing delayed recovery phase128. Sluggish diffusion 
of grain boundaries in quaternary and quinary 
alloys hinders preferential texture growth, lead-
ing to randomisation of the texture. First-order 
annealing twins give rise to new annealing texture 
components such as K and M component apart 
from retained CR components129. No significant 
change in texture was observed with the anneal-
ing temperature. Bs, Goss, and S texture com-
ponents appear post-cold rolling–annealing at 
800 °C in CoCrFeMnNi (FCC) alloy with 1 atom 
% of carbon content elevating the strength185. 
Annealing twinning in Cantor alloy aids strong 
texture modification post-recrystallisation126. 
Randomisation of texture post-annealing was 
corroborated with Cellular Automata simula-
tion results. Another study on annealing texture 
analysis of Cantor alloy showed S component 
dominant compared to brass and Goss com-
ponents, and became stronger with annealing 
temperature142.

Annealing of EHEA post-warm rolling 
at 800, 1000, and 1200  °C renders the FCC 
phase with retained deformed texture com-
ponents. {112} < 110 > components are pre-
sent post-annealing at 800  °C in B2 phase, and 
{111} < 110 > component shows up at 1200 °C130. 
{111} < 110 > component predominates along 
with ND fibre post-annealing of the HfZrTiTaNb 
HEA131.

7 �Severe Plastic Deformation
HEA have been processed and engineered using 
high-pressure torsion (HPT) to improve the 
strength, hardness, ductility, and superplastic-
ity. The studies performed on HEA, out of which 
some significant cases will be discussed here. 
HPT combined with thermal annealing imparts 
400% increase in hardness to Al0.3CoCrFeNi 
HEA. Formation of ordered BCC phase at 

Figure 9:  Significant finer grain size achieved in 
high heating rate sample compared with low heat‑
ing rate samples after annealing at two different 
time at 1000 °C45
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high-temperature (500–700  °C) annealing as 
well as heterostructure promotes the elevation in 
hardness186. A grain size of 25  nm was achieved 
by HPT performed on AlNbTiVZr0.5 alloy which 
had an initial coarse-grained structure with B2 
matrix embedded with C14 Laves phase (rich in 
aluminium and Zirconium). Increase in nano-
hardness (550–665 HV) was observed in the B2 
phase, whereas the C14 Laves phase becomes 
softer post-HPT187. Betterment in hardness in 
HPT processed HfNbTiZr BCC alloy from 2600 
to 4450  MPa was realised by the aid of friction 
stress, possessing dislocation density of the order 
of 1016  m−2188. Chromium oxide precipitates of 
size 7–10  nm in a matrix of CoCrFeMnNi alloy 
consisting of FCC + BCC solid solutions show 
hardness of 6700  MPa which is a staggering 
improvement in this kind of alloys189. Hardness 
improvement of 910 HV by forming a multiphase 
nanostructured microstructure obtained after 
long time (100  h) annealing of HPT processed 
Cantor alloy is reported by Schuh et al.190. Cyclic 
HPT (changes in strain path) creates unstable 
dislocation structure and fine grains which is 
responsible for high hardness of CoCuFeMnNi 
alloy191. Room temperature and cryo-HPT led to 
high hardness and fine grain morphology in Can-
tor alloy192.

The synergy of tensile strength and ductil-
ity was demonstrated in case of HPT followed 
by annealing in V10Cr15Mn5Fe35Co10Ni2 alloy, 
possessing 1.54 GPa UTS and 6% of ductil-
ity194. V10Cr15Mn5Fe35Co10Ni25 alloy showcased 
a hardness of 505 MPa and tensile strength of 2 
GPa with elongation failure of ~ 6%, post-HPT 
of coarse- and fine-grained starting material195. 
This was assisted by dislocation substructure 
formation along with twinning in the HEA. The 
Ashby plot for HPT processed and rolled HEAs is 

compared and shown in Fig. 10. The properties of 
fine and nanometer size grains post-HPT as well 
as rolling have been depicted in the plot. Nanom-
eter size grain formation in HPT processed 
CoCrFeMnNi alloy improved the superplasticity 
behaviour (> 600% total elongation) at high tem-
peratures; grain boundary sliding being instru-
mental for the former behaviour198,199. Addition 
of 2 atom % titanium in CoCrFeMnNi alloy fol-
lowed by HPT showed 830% total elongation at 
700  °C defining a new benchmark of superplas-
ticity in HEA. This is possible due to grain size of 
30 nm and retention of equiaxed nature of grains 
as titanium triggers sluggish diffusion200.

8 �Comparison of HEA Properties 
with High‑Performance Materials 
Post‑RHP

The comparison of tensile mechanical proper-
ties at room temperature of HEA with high-
performance materials after RHP is presented in 
Fig.  10201–209. The best strength ductility combi-
nation (PSD) of RHPed HEA (maximum PSD 
of 60 GPa × % FeCoCrNiMn-1 at % C) is in the 
same range of TWIP steel (PSD: 58 GPa × %)204, 
TRIP steel (PSD: 51 GPa × %)208. The highest 
yield strength (YS) values of RHPed HEA (maxi-
mum YS: 1437  MPa AlCoCrFeNi2.1) are close to 
that of Fe-20 Cr-20 Ni steel (YS: 1428  MPa)207, 
austenitic stainless steel (YS: 1410  MPa)206, etc. 
The strength–ductility combination for many 
RHP HEA is also higher compared to micro-
alloyed steel (PSD: 18.4 GPa × %)201, dual-phase 
steel (PSD: 11.2 GPa × %)209, and ferritic stainless 
steel (PSD: 16.8 GPa × %)203 (Fig. 11). The micro-
structural evolution in the above-mentioned 
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Figure  10:  Ultimate tensile strength vs. ductility 
of SPD processed HEAs showing different prop‑
erties post-HPT and rolling.

Figure  11:  The comparison of post-rolling and 
annealing room-temperature tensile properties of 
high entropy alloys with other high performance.
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alloys include precipitations inhibiting grain 
growth203, twinning204, grain refinement207, etc. 
The role of various parameters during rolling and 
heat treatment processes is significant in these 
high-performance materials also in deciding 
final strength–ductility combination201. Figure 10 
shows compilation of various yield strength and 
PSD values of the RHPed HEA and their compar-
ison with conventional RHP high-performance 
materials201–209.

9 �Summary and Futuristic Approaches
In this review, the role of processing has been 
emphasized on room-temperature mechani-
cal properties of a wide range of HEAs. The key 
variables of rolling and heat treatment process 
(RHP) that can be tuned to enhance the perfor-
mance of synthesized HEA have been elaborated 
and debated. The strengthening mechanisms 
in HEA which operate during the deformation 
are explained in terms of metamorphosis of the 
microstructure. These changes are dependent on 
the nature of phases, working temperature along 
with SFE of the HEA. Tuning the total strain, 
strain path, and symmetricity of rolling optimally 
could impart additional strengthening. Further 
in the processing, the annealing temperature pri-
marily dictates the microstructure evolution. The 
optimization of annealing time, heating rate, etc. 
enhances the strength–ductility synergy further. 
Following the evaluation of the role of possible 
parameters in influencing the microstructure 
evolution and room-temperature tensile proper-
ties during RHP in HEA, some futuristic ideas are 
enlisted below:

1.	 The strength–ductility combination can be 
enhanced to a desirable magnitude by com-
bination of the advantages of multiple RHP 
domains in terms of temperature and, e.g., 
combination of cryo-rolling and warm roll-
ing as well as asymmetric and symmetric 
rolling (hybrid rolling). This combination 
will enable the generation of hierarchical 
heterostructures with gradient microstruc-
tures which will help to promote the above-
mentioned synergy.

2.	 Integrated Computational Materials Engi-
neering (ICME) approach could find a solu-
tion for predicting processing–property 
correlation of HEA, by conducting lesser 
number of experiments. These simula-

tion models can be used for better design 
of selective experiments to achieve optimal 
performance of HEA. The better design of 
experiments will promote energy efficiency 
and hassle-free methods to scale up the 
methods.

3.	 Microstructure and crystallographic texture 
simulation studies on HEA can be carried 
out to enable better maneuvering of micro-
structure–property correlation.

4.	 SPD techniques such as accumulative roll 
bonding can be performed to develop multi-
layers which inherently develop hierarchical 
microstructure (responsible for strength–
ductility alliance) owing to the non-uniform 
strain-induced during the process. Along 
with developing the above properties and 
microstructures, the scale up of these pro-
cesses is highly possible which could be 
undertaken to compete with the conven-
tional materials in the market.
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