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It is very common in the literature to write a Markovian quantum master equation in Lindblad form to describe
a system with multiple degrees of freedom and weakly connected to multiple thermal baths which can, in general,
be at different temperatures and chemical potentials. However, the microscopically derived quantum master
equation up to leading order in a system-bath coupling is of the so-called Redfield form, which is known to
not preserve complete positivity in most cases. Additional approximations to the Redfield equation are required
to obtain a Lindblad form. We lay down some fundamental requirements for any further approximations to
the Redfield equation, which, if violated, leads to physical inconsistencies such as inaccuracies in the leading
order populations and coherences in the energy eigenbasis, violation of thermalization, and violation of local
conservation laws at the nonequilibrium steady state. We argue that one or more of these conditions will
generically be violated in all the weak system-bath-coupling Lindblad descriptions existing in the literature to our
knowledge. As an example, we study the recently derived universal Lindblad equation and use these conditions
to show the violation of local conservation laws due to inaccurate coherences but accurate populations in the
energy eigenbasis. Finally, we exemplify our analytical results numerically in an interacting open quantum spin
system.
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I. INTRODUCTION

A fundamental problem relevant across a wide range of
fields including quantum optics [1], thermodynamics [2],
chemistry [3], engineering [4], and biology [5] is to describe a
quantum system with multiple degrees of freedom connected
to multiple thermal baths. An approach very often taken is to
derive an effective quantum master equation (QME) for the
dynamics of the system assuming weak coupling between the
system and the baths. The dynamics of the quantum system,
as described by the QME, is often desired to be Markovian.
It was shown by Gorini, Kossakowski, Sudarshan [6], and
Lindblad [7] (GKSL) that a QME that preserves all properties
of the density matrix and describes Markovian dynamics has
to be of the form

∂ρ̂

∂t
= i[ρ̂, ĤS] + L̂(ρ̂ ),

L̂(ρ̂) = i[ρ̂, ĤLS] +
D2−1∑
λ=1

γλ

(
L̂λρ̂L̂†

λ − 1

2
{L̂†

λL̂λ, ρ̂}
)

, (1)

which is commonly called a Lindblad equation. Here, ρ̂ is the
density matrix of the system, ĤS is the system Hamiltonian,
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ĤLS is the Hermitian contribution due to the presence of the
baths, commonly called the Lamb shift term, L̂λ are the Lind-
blad operators and γλ are the rates, and D is the dimension of
the Hilbert space. Here we will confine our study to (effective)
finite-dimensional systems. Both ĤLS and L̂λ are operators in
the system Hilbert space. This equation preserves Hermiticity
and trace of ρ̂, as well as ensures non-negativity of all eigen-
values of ρ̂ at all times for all initial states of the system. The
last condition crucially requires that γλ � 0 [6,7]. This result
is one of the cornerstones of open quantum systems. Indeed, a
large number of analytical [8–10] and numerical [11–14] tech-
niques rely on describing experimental systems via Lindblad
equations.

The standard way to obtain a QME to leading order in
system-bath coupling is via the Born-Markov approxima-
tion [8–10]. The QME so obtained, often called the Redfield
equation (RE) [15], though reducible to a Lindblad-like form,
is known to generically not satisfy complete positivity, i.e.,
not satisfy the requirement γλ � 0 [16–22]. This means that
for certain initial states and at certain times, it will not give
a positive semidefinite density matrix. To rectify this draw-
back, typically, further approximations are made to obtain a
Lindblad equation either in the so-called local or global forms,
which we call local Lindblad equations (LLE) and eigenbasis
Lindblad equations (ELE), respectively [8–10]. Several short-
comings of the LLE and ELE so obtained, in particular their
failure to correctly describe the steady state when coupled to
multiple baths, have been pointed out in the literature and
their regimes of validity discussed [16,17,23–39]. Despite
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this, the conventional wisdom is that, in principle, it should
be possible to find a Lindblad equation, different from both
LLE and ELE, which accurately describes the steady state.
Indeed, there have been a number of recent attempts towards
developing such new variants of Lindblad equations [40–45],
which are intended to be as accurate as the RE.

Here, we lay down some fundamental requirements on any
such attempt to recover complete positivity, which, if violated,
causes physical inconsistencies such as inaccuracies in the
leading order populations (diagonal elements of the density
matrix) and coherences (off-diagonal elements of the density
matrix) in the energy eigenbasis, violation of thermalization,
and violation of local conservation laws in the nonequilibrium
steady state (NESS). We show that the RE does not have any
of the above physical inconsistencies, despite being generi-
cally not completely positive. On the other hand, we argue that
no existing weak system-bath-coupling Lindblad description,
to our knowledge, generically satisfies all the conditions, and
therefore has one or more of the physical inconsistencies
despite being completely positive. As an example, we study in
detail the so-called universal Lindblad equation (ULE) [40],
which has been recently rigorously derived to have accu-
racy comparable to that of the RE. We show that the ULE
gives inaccurate coherences in the energy eigenbasis to the
leading order and violates local conservation laws. All of
the above statements are shown in complete generality for
time-independent Hamiltonians, without writing any specific
system Hamiltonian. This model-independent discussion sets
apart our work from most previous works on checking the
accuracy of various QMEs, where the accuracies were studied
numerically in specific models [16,17,23–37]. We finally ex-
emplify our discussion numerically in a three-site XXZ model
coupled to two bosonic baths.

The paper is organized as follows. In Sec. II, we discuss
the fundamental requirements. In Sec. III, we discuss how the
RE satisfies all the fundamental requirements except complete
positivity. In Sec. IV, we show that the ULE violates some of
the fundamental requirements while restoring complete posi-
tivity and make some general comments about other Lindblad
equations. In Sec. V, we numerically exemplify our discus-
sions using the XXZ model. In Sec. VI, we summarize and
conclude.

II. FUNDAMENTAL REQUIREMENTS FOR AN
ACCURATE WEAK-COUPLING MARKOVIAN

DESCRIPTION

A. The setup and assumptions

For simplicity and concreteness, let us consider a typical
two-terminal setup of the form given in Fig. 1. The Hamilto-
nian of the full setup can be written in the form

Ĥ = ĤS + εĤSB + ĤB,

ĤSB = ĤSBL + ĤSBR , ĤB = ĤBL + ĤBR , (2)

where ĤS is the Hamiltonian of the system, ĤBL (ĤBR ) is
the Hamiltonian of the left (right) bath, ĤSBL (ĤSBR ) is the
coupling between the left (right) bath and the system, and the
dimensionless parameter ε controls the strength of the system-
bath couplings. We consider the system-bath couplings to be

FIG. 1. A typical two-terminal nonequilibrium setup with not all
sites attached to the baths. The Hamiltonian ĤM describes the part of
ĤS that commutes with the system-bath-coupling Hamiltonians ĤSBL

and ĤSBR , while the Hamiltonian ĤL (ĤR) describes the part of the
system Hamiltonian that does not commute with ĤSBL (ĤSBR ).

weak, ε � 1. The system Hamiltonian is further broken into

ĤS = ĤL + ĤM + ĤR, (3)

where ĤM contains the part of the system Hamiltonian
that commutes with the system-bath-coupling Hamiltoni-
ans ĤSBL and ĤSBR , while, ĤL (ĤR) contains the part of
the system Hamiltonian that does not commute with ĤSBL

(ĤSBR ). We will further assume for simplicity that the system
Hamiltonian ĤS has no degeneracies. Initially, the system is
at some arbitrary state, while the baths are at inverse tempera-
tures βL and βR, and chemical potentials μL and μR. We take
the total number of particles (excitations) in the whole setup
to be conserved. Without loss of generality, it is possible to
assume that Tr[ĤSBρ̂(0) ⊗ ρ̂B] = 0 [8], where ρ̂B denotes the
composite state of the two baths given by the product of their
individual thermal states. The state of the system at a time t is

ρ̂(t ) = TrB[e−iĤt ρ̂(0) ⊗ ρ̂BeiĤt ], (4)

where TrB(·) implies trace over bath degrees of freedom. We
will assume that in the long-time limit, the system reaches
a unique NESS. This assumption physically necessitates that
the system size is finite, while the baths are in the thermody-
namic limit. The NESS density matrix is then defined as

ρ̂NESS = lim
t→∞ TrB[e−iĤt ρ̂(0) ⊗ ρ̂BeiĤt ]. (5)

With this concrete, but still fairly general setup and the as-
sumptions in mind, we now look at what the fundamental
requirements are for a weak-coupling QME to accurately de-
scribe the NESS of the system.

B. The fundamental requirements

We want to have a Markovian QME, written to leading
order in system-bath coupling, that accurately predicts the
NESS density matrix. To this end, we require the following
physical conditions:

(a) Preservation of all properties of density matrix. We want
a QME of the form

∂ρ̂

∂t
= i[ρ̂, ĤS] + ε2L̂2(ρ), (6)
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where we have made it explicit that this equation is written
to O(ε2), which can be shown to be leading order [8]. To
preserve all properties of the density matrix, i.e., (i) Hermitic-
ity, (ii) trace, and (iii) complete positivity, L̂2(ρ) must be
reducible to the form of L̂(ρ) given in Eq. (1), with γλ � 0.

(b) Correct populations and coherences in energy eigenba-
sis to the leading order. Since we are making a weak-coupling
approximation at the level of the QME, we cannot expect
to have accurate results at NESS to all orders in ε. But, we
want to have results correct to at least the leading order. In
particular, we want to have correct results for both populations
and coherences in the energy eigenbasis at least to the leading
order. Coherences in the energy eigenbasis of the system, as
well as population inversions in the energy eigenbasis, have
been considered to be a resource in quantum thermodynamics
and information [46–56]. Thus, it is important to describe
populations and coherences correctly. Moreover, as we will
see later, both populations and coherences are crucially linked
to having correct currents at NESS.

(c) Thermalization. Further, having correct populations
to leading order is also linked with the fundamental phe-
nomenon of thermalization of the system with the baths when
they have same temperatures and chemical potentials, βL =
βR = β, μL = μR = μ. In that case, on physical grounds, the
steady-state density matrix is expected to satisfy the following
condition:

lim
ε→0

[ lim
t→∞ ρ̂(t )] = e−β(ĤS−μN̂S )

Tr(e−β(ĤS−μN̂S ) )
, (7)

where N̂S is the total particle or excitation number operator of
the system. In other words, populations of the density matrix
in the energy eigenbasis of the system, to the leading order
in system-bath coupling, should follow a Gibbs distribution
specified by the temperature and the chemical potential of
the baths when they are all equal. As we will show later, if
the steady state is unique, this condition is always satisfied in
the exact steady state [Eq. (5)]. Note that in Eq. (7), the order
of limits cannot be interchanged.

(d) Preservation of local conservation laws. Writing the
Heisenberg’s equation of motion for our setup and taking
trace, it is clear that the rate of change of the expectation
value of any operator Ô which commutes with the system-bath
couplings is given by

d〈Ô〉
dt

= −i〈[Ô, ĤS]〉, ∀ [Ô, ĤSB] = 0, (8)

where 〈·〉 = Tr(ρ̂ . . .). This condition is obviously true irre-
spective of the strength of the system-bath couplings. We
want our effective weak system-bath-coupling description to
preserve this condition. Combining Eqs. (8) and (6), we see
that this entails

Tr[ÔL̂2(ρ̂)] = 0, ∀ [Ô, ĤSB] = 0. (9)

This condition is not usually discussed in the context of de-
riving weak-coupling Markovian descriptions. However, the
importance of this condition becomes clear when it is written
for one of the locally conserved quantities, such as ĤM ,

d〈ĤM〉
dt

= −i〈[ĤM, ĤS]〉 = JL→M − JM→R,

JL→M = −i〈[ĤM, ĤL]〉, JM→R = i〈[ĤM, ĤR]〉, (10)

where we have defined the energy current into the central
region from the left as JL→M , and that from the central region
to the right as JM→R. These currents are expectation values
of some system operators and do not involve any explicit
dependence on system-bath couplings. At NESS, the rate of
change of the expectation values of all system operators is
zero. Thus, d〈ĤM 〉

dt = 0, which implies JL→M = JM→R. So we
have

〈[ĤM, ĤL]〉 = −〈[ĤM , ĤR]〉 	= 0. (11)

This is a fundamental property of the NESS that should
exactly hold irrespective of the strength of the system-bath
couplings. Equation (10), which at NESS leads to the above
condition, is a continuity equation coming from the local
conservation of energy. Analogous conditions can be derived
for other locally conserved quantities. The QME written to
leading order should satisfy all such conditions. It is clear that
Eq. (9) guarantees this.

It can be seen that satisfying Eq. (9) and giving the correct
rate of change of the expectation value of Ô in Eq. (8) re-
quires that the coherences in the energy eigenbasis are given
correctly. To see this, we write the system Hamiltonian in the
energy eigenbasis,

ĤS =
∑

α

Eα|Eα〉〈Eα|. (12)

Using this basis, Eq. (8) can be written as

d〈Ô〉
dt

= −i
D∑

α,ν=1

(Eα − Eν )〈Eα|ρ̂|Eν〉〈Eν |Ô|Eα〉,

∀ [Ô, ĤSB] = 0. (13)

Clearly, the right-hand side of above equation is governed
by the coherences in the energy eigenbasis of the system.
Thus, satisfying local conservation laws and obtaining correct
currents at NESS requires the coherences to be correct (at least
to leading order).

C. The equations giving correct populations and coherences
to the leading order

Let us now see what condition in terms of L̂2 must
be satisfied so that the populations and the coherences in
the energy eigenbasis are correct to the leading order. We
assume that the NESS density matrix is defined in Eq. (5) and
can be expanded in powers of ε,

ρ̂NESS =
∞∑

m=0

ε2mρ̂
(2m)
NESS. (14)

The QME describing the evolution of ρ̂(t ) can also be sys-
tematically expanded in the so-called time-convolution-less
form [8],

∂ρ̂

∂t
=

∞∑
m=0

ε2mL̂2m(t )[ρ̂(t )], (15)

where L̂2m(t ) are, in general, time-dependent linear operators
and L̂0(t )[ρ̂(t )] = i[ρ̂(t ), ĤS]. By definition, the steady state
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ρ̂NESS satisfies

0 =
∞∑

m=0

ε2mL̂2m[ρ̂NESS], (16)

where we denote L̂2m ≡ L̂2m(t → ∞).
Using the series expansion of ρ̂NESS and matching terms

order by order yields, at the lowest order (ε0), the condition
[ρ̂ (0)

NESS, ĤS] = 0. This implies that ρ̂
(0)
NESS is diagonal in the

energy eigenbasis of the system,

〈Eα|ρ̂ (0)
NESS|Eν〉 = 0, ∀α 	= ν. (17)

This shows that while the populations can have the O(ε0)
term, the leading order contribution to coherences in the en-
ergy eigenbasis is O(ε2). (Remember that we have assumed
no degeneracies in the system Hamiltonian.) This means
ρ̂

(0)
NESS can be written as

ρ̂
(0)
NESS =

∑
α

pα|Eα〉〈Eα|. (18)

As a consequence, when the temperatures and the chemical
potentials of the baths are equal, βL = βR = β, μL = μR = μ,
the thermalization condition given by Eq. (7) requires

pα ∝ e−β(Eα−μNα ), (19)

where Nα is the number of particles or excitations in the
energy eigenstate Eα .

Let us now look at two higher orders in ε. At order ε2, using
Eq. (14) in Eq. (16) then leads to the following conditions:

〈Eα|L̂2
[
ρ̂

(0)
NESS

]|Eα〉 = 0, (20)

i(Eα − Eν )〈Eα|ρ̂ (2)
NESS|Eν〉

+ 〈Eα|L̂2
[
ρ̂

(0)
NESS

]|Eν〉 = 0, ∀ α 	= ν, (21)

and, at order ε4, we get

〈Eα|L̂2
[
ρ̂

(2)
NESS

]|Eα〉 + 〈Eα|L̂4
[
ρ̂

(0)
NESS

]|Eα〉 = 0. (22)

The set of equations obtained by writing Eq. (20) for var-
ious values of eigenstate index α gives a complete set of
equations which determines the nonzero elements of ρ̂

(0)
NESS.

Given ρ̂
(0)
NESS, the set of equations obtained by writing Eq. (21)

for various values of eigenstate indices α and ν determines
the off-diagonal elements of ρ̂

(2)
NESS in the energy eigenbasis.

Finally, given the off-diagonal elements of ρ̂
(2)
NESS in the energy

eigenbasis, and the ρ̂
(0)
NESS, the set of equations obtained by

writing Eq. (22) for various values of the eigenstate index
α determines the diagonal elements of ρ̂

(2)
NESS. It is crucial to

note the occurrence of L̂4 in Eq. (22). Since the leading order
populations are O(ε0) and the leading order coherences are
O(ε2), Eqs. (20) and (22) give the necessary equations to solve
in order to obtain populations and coherences correct to the
leading order. The above discussion corresponds to the NESS
obtained from the exact QME, given by Eq. (15), in the regime
of small ε.

D. The need to go beyond standard Lindblad descriptions

In the previous section, L̂2 was derived from a time-
convolution-less expansion. This fixes the form of L̂2. If we

truncate the time-convolution-less expansion at O(ε2) and
take the long-time limit, we get an equation that is exactly
of our desired form in Eq. (6). This coincides with the Born-
Markov approximation and gives the RE [8]. However, it is
known that the RE does not generically satisfy the require-
ment of complete positivity [16–22]. Due to this, very often
further approximations are made on L̂2, modifying it to, say,
L̂′

2 so as to impose complete positivity. Our analysis in the
previous sections allows us to impose some necessary restric-
tions on the approximations by fixing certain components of
L̂′

2, so that the fundamental requirements are satisfied. The
set of conditions is summarized in Table I. In particular, we
see that for both populations and coherences to be correct
to the leading order, we require the operation of L̂′

2 on any
state diagonal in the energy eigenbasis to be the same as that
of L̂2.

In most studies of the accuracy of the results from QMEs,
the accuracy is checked by applying them to some particu-
lar system and comparing the results with some other more
accurate method [16,17,23–38]. This does not let one clearly
comment on situations where such more accurate methods are
unavailable. The set of conditions in Table I allows us to assess
the accuracy of L̂′

2 by making formal checks, without explic-
itly writing it for any particular system. They therefore allow a
completely general discussion of the accuracy of NESS results
from QMEs, even in cases where some more accurate method
is unavailable.

The most standard approximations on L̂2 involve reducing
it to either the form of LLE or ELE. As mentioned before,
it is already well established that the LLE and the ELE do
not satisfy all the fundamental requirements mentioned in
Sec. II B [16,17,23–38], and therefore do not satisfy all the
conditions in Table I. The LLE does not show thermalization,
while it explicitly satisfies the fourth condition in Table I,
thereby preserving local conservation laws. On the other hand,
the ELE explicitly neglects various coherences in the en-
ergy eigenbasis of the system, but satisfies thermalization [8].
Moreover, ELE does not also satisfy the fourth condition in
Table I. Further, the ELE is known to not satisfy Eq. (11)
because it gives zero currents inside the system, even in an
out-of-equilibrium condition [24,28]. So neither of these stan-
dard Lindblad equations satisfy all the requirements above.
This makes it necessary to go beyond these standard approxi-
mations, even at weak system-bath coupling.

In the following section, we consider the RE in more detail
and show that even though the RE does not generically satisfy
the requirement of complete positivity, it satisfies all of the
other fundamental requirements.

III. THE REDFIELD EQUATION

A. Accuracy of populations and coherences from the Redfield
equation and lack of complete positivity

As mentioned before, the RE is obtained by truncating
Eq. (15) at second order and replacing L̂2(t ) by L̂2(t →
∞) ≡ L̂2 [8],

∂ρ̂

∂t
= L̂0[ρ̂(t )] + ε2L̂2[ρ̂(t )]. (23)
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TABLE I. Summary of necessary conditions that a QME written to the leading order in the system-bath coupling must satisfy to accurately
describe the steady state of a setup of the form in Fig. 1. L̂2 is the O(ε2) term obtained by systematically doing time-convolution-less expansion
and taking the long-time limit [see Eqs. (15) and (16)]. The L̂2[ρ̂] coincides with that obtained in the Redfield equation via the Born-Markov
approximation and is known to generically not satisfy the complete positivity requirement γλ � 0. The L̂′

2 is any modification of L̂2 which
may restore complete positivity.

1. Correct populations to leading order [O(ε0 )] 〈Eα|L̂′
2[

∑
α pα|Eα〉〈Eα|]|Eα〉 = 〈Eα|L̂2[

∑
α pα|Eα〉〈Eα|]|Eα〉

2. Correct coherences to leading order [O(ε2)] 〈Eα|L̂′
2[

∑
α pα|Eα〉〈Eα|]|Eν〉 = 〈Eα|L̂2[

∑
α pα|Eα〉〈Eα|]|Eν〉, ∀ α 	= ν

3. Thermalization [Eq. (7)] 〈Eα|L̂′
2[

∑
α pα|Eα〉〈Eα|]|Eα〉 = 0 ⇒ pα ∝ e−β(Eα−μNα ) when βL = βR = β, μL = μR = μ

4. Preservation of local conservation laws Tr[ÔL̂′
2(ρ̂)] = 0, ∀ [Ô, ĤSB] = 0

5. Complete positivity L̂′
2[ρ̂] = i[ρ̂, ĤLS] + ∑D2−1

λ=1 γλ(L̂λρ̂L̂†
λ − 1

2 {L̂†
λL̂λ, ρ̂}), γλ � 0

The NESS obtained from the RE, which we denote by ˆ̃ρNESS,
is given by

ˆ̃ρNESS = lim
t→∞ et (L̂0+L̂2 )[ρ(0)], (24)

and satisfies

0 = L̂0[ ˆ̃ρNESS] + ε2L̂2[ ˆ̃ρNESS]. (25)

The density matrix can also be expanded in powers of ε,
ˆ̃ρNESS = ∑∞

m=0 ε2m ˆ̃ρ
(2m)
NESS. The question then is, to what order

in ε do the elements of ˆ̃ρNESS and ρ̂NESS agree?
Proceeding as before, we again get [ ˆ̃ρ

(0)
NESS, ĤS] = 0, im-

plying a diagonal ˆ̃ρ
(0)
NESS in the energy eigenbasis. At O(ε2),

we now obtain

〈Eα|L̂2
[

ˆ̃ρ
(0)
NESS

]|Eα〉 = 0, (26)

i(Eα − Eν )〈Eα| ˆ̃ρ
(2)
NESS|Eν〉

+ 〈Eα|L̂2
[

ˆ̃ρ
(0)
NESS

]|Eν〉 = 0, ∀ α 	= ν, (27)

while at O(ε4), we get

〈Eα|L̂2
[

ˆ̃ρ
(2)
NESS

]|Eα〉 = 0. (28)

Equations (26), (27), and (28) are the analogs of
Eqs. (20), (21), and (22), respectively. We see from Eqs. (20)
and (26) that ρ̂

(0)
NESS and ˆ̃ρ (0)

NESS satisfy the exact same set of
equations, which implies

ˆ̃ρ
(0)
NESS = ρ̂

(0)
NESS. (29)

Next, from Eqs. (21) and (27), we see that the off-diagonal
elements of ρ̂

(2)
NESS and ˆ̃ρ

(2)
NESS in the energy eigenbasis also

satisfy exactly the same equation, therefore implying

〈Eα| ˆ̃ρ
(2)
NESS|Eν〉 = 〈Eα|ρ̂ (2)

NESS|Eν〉, ∀ α 	= ν. (30)

Thus, the leading order terms in the populations and coher-
ences are given correctly by the RE. However, Eq. (22), which
fixes the diagonal elements of ρ̂

(2)
NESS in the energy eigenbasis,

is different from Eq. (28), which fixes the same for ˆ̃ρ
(2)
NESS. So,

〈Eα| ˆ̃ρ
(2)
NESS|Eα〉 	= 〈Eα|ρ̂ (2)

NESS|Eα〉. (31)

Specifically, Eq. (22) shows that to obtain the diagonal ele-
ments of the NESS density matrix in the energy eigenbasis

correct to O(ε2), one needs the QME up of O(ε4). Based on
these results, we have

||ρ̂NESS − ˆ̃ρNESS|| ∼ O(ε2), (32)

where ||P̂|| is the norm of the operator P̂. So, the error in
obtaining the NESS from Eq. (23) is O(ε2). Despite this,
the leading order coherences in the energy eigenbasis, which
are O(ε2), are given correctly. Having the O(ε2) term in the
coherences accurately while not having the corresponding
correction in the populations can cause, at O(ε2), a violation
of positivity of the density matrix [57,58]. Thus, the lack of
complete positivity of the RE stems from the above mismatch
in order of accuracy between populations and coherences.

B. Thermalization

The explicit form of Eq. (23) is given by (Eq. (9.52) of
Ref. [8])

∂ρ̂

∂t
=i[ρ̂(t ), HS] + ε2

∫ ∞

0
dt ′[ĤSB, [ĤSB(−t ′), ρ̂(t ) ⊗ ρ̂B]],

(33)

where ĤSB(t ) = ei(ĤS+ĤB )t ĤSBe−i(ĤS+ĤB )t . Let us now consider
the following canonical model of thermal baths:

ĤB =
∑




′
∞∑

r=1

�

r B̂(
)†

r B̂(
)
r , (34)

ĤSB =
∑




′
∞∑

r=1

(
κ
rB̂(
)†

r Ŝ
 + κ∗

r Ŝ†


 B̂(
)
r

)
, (35)

where
∑′


 indicates the sum over all sites of the system
where the baths are attached, B̂(
)

r is the bosonic or fermionic
annihilation operator for the rth mode of the bath attached
at the 
th site, and Ŝ
 is the system operator coupling to the
bath at site 
. At the initial time, the baths are taken to be in
their respective thermal state with inverse temperatures β
 and
chemical potentials μ
. The dynamics of the system can be
shown to be governed by the bath spectral functions, defined
as

J
(ω) =
∑

k

2π |κ
k|2δ
(
ω − �


k

)
, (36)

and the Fermi or Bose distributions, n
(ω) = [eβ
(ω−μ
 ) ±
1]−1, corresponding to the initial states of the baths. The RE
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for this setup is obtained by simplification of Eq. (33), using
Eqs. (34) and (35):

∂ρ̂

∂t
= i[ρ̂, ĤS] − ε2

∑



′([
Ŝ†


 , Ŝ(1)

 ρ̂

] + [
ρ̂Ŝ(2)


 , Ŝ†



] + H.c.
)
,

(37)

where

Ŝ(1)

 =

∫ ∞

0
dt ′

∫
dω

2π
Ŝ
(−t ′)eβ
(ω−μ
 )J
(ω)n
(ω)e−iωt ′

,

Ŝ(2)

 =

∫ ∞

0
dt ′

∫
dω

2π
Ŝ
(−t ′)J
(ω)n
(ω)e−iωt ′

, (38)

with Ŝ
(t ) = eiĤSt Ŝ
e−iĤSt , and H.c. denoting Hermitian con-
jugate. Note that, in general, [Ŝ
, Ŝ(1)


 ] 	= 0, [Ŝ
, Ŝ(2)

 ] 	= 0. Let

us now check if the RE satisfies the thermalization condition
given in Eq. (7). To this end, we need to find the leading order
populations when the temperatures and chemical potentials of
the baths are the same, βL = βR = β, μL = μR = μ. Defining
Eνα = Eν − Eα and writing ρ̂

(0)
NESS = ∑

α pα|Eα〉〈Eα|, it can
be checked after some algebra that Eq. (26), for the RE in
Eq. (37), takes the form∑

ν

[|〈Eν |Ŝ
|Eα〉|2[pα − eβ(Eνα−μ) pν

]
J
(Eνα )n
(Eνα )

+ |〈Eα|Ŝ
|Eν〉|2
[
pν − eβ(Eαν−μ) pα

]
J
(Eαν )n
(Eαν )

]
= 0. (39)

We now consider the case where the system operator coupling
to the bath can create or annihilate a single particle, i.e.,
〈Eν |Ŝ
|Eα〉 = 0, ∀ Nα − Nν 	= 1. This condition ensures that
with the system-bath coupling of the form in Eq. (35), the
total number of excitations in the full setup is conserved. It
can then be checked that the following choice of pα satisfies
the above equation:

pα ∝ e−β(Eα−μNα ). (40)

Since we have assumed the steady state to be unique, this
proves that the thermalization condition, i.e., the third con-
dition in Table I, is satisfied.

Note that since the leading order populations obtained
from RE are exactly the same as those obtained from the
full general time-convolution-less Eq. (15), the above proof of
thermalization is essentially a proof of thermalization for the
full time-convolution-less Eq. (15). Thus, if the steady state
is unique, the thermalization condition is satisfied in complete
generality. So, any Lindblad equation that does not satisfy this
condition (such as the LLE) cannot describe the steady state
of a system coupled to thermal baths.

C. Satisfying local conservation laws

Given the RE [Eq. (37)], one can write an expression for
expectation value of any system operator O,

d 〈Ô〉
dt

= −i 〈[Ô, ĤS]〉 − ε2
′∑



(〈[
Ô, Ŝ†




]
Ŝ(1)




〉 − 〈
Ŝ(2)




[
Ô, Ŝ†




]〉
+ 〈

Ŝ(1)†


 [Ŝ
, Ô]
〉 − 〈

[Ŝ
, Ô]Ŝ(2)†




〉)
. (41)

It is clear from the above expression that the fourth condition
in Table I is satisfied. Thus, it is clear that the local conserva-
tion laws inside the system are satisfied. Not only that, as we
show below, further conservation laws relating currents from
the baths and currents inside the system are also satisfied.

For the kind of setup in Fig. 1, the RE can be written as

∂ρ̂

∂t
= i[ρ̂, ĤS] + ε2

(
L̂(L)

2 [ρ̂(t )] + L̂(R)
2 [ρ̂(t )]

)
, (42)

where L̂(L)
2 [ρ̂(t )] (L̂(R)

2 [ρ̂(t )]) encodes the effect of the left
(right) bath, with the full superoperator being L̂2[ρ̂(t )] =
L̂(L)

2 [ρ̂(t )] + L̂(R)
2 [ρ̂(t )]. Using this, we can write the equa-

tion for the rate of change of energy in the system,

d 〈ĤS〉
dt

= JBL + JBR , JBL = ε2Tr
(
ĤSL(L)

2 [ρ(t )]
)
, (43)

JBR = ε2Tr
(
ĤSL(R)

2 [ρ(t )]
)
, (44)

where JBL (JBR ) can be interpreted as the energy current from
the left (right) bath into the system.

Next, let us look at the relation between the currents from
the baths and the currents in the system. Due to local conser-
vation of energy, the following continuity equations must be
satisfied:

d 〈ĤL〉
dt

= JBL − JL→M,
d 〈ĤR〉

dt
= JBR + JM→R, (45)

where JL→M and JM→R are defined in Eq. (10). Satisfying
this condition requires that along with Eq. (9), the following
relation is satisfied:

Tr
(
Ĥ
L̂(L)

2 [ρ(t )]
) + Tr

(
Ĥ
L̂(R)

2 [ρ(t )]
) = Tr

(
ĤSL̂(
)

2 [ρ(t )]
)
,


 = L, R. (46)

From Eqs. (42) and (44), we can show that this condition
is indeed satisfied and the local continuity equation relating
the currents from the bath and the currents inside the system
holds. At NESS, since the rate of change of all the system
operators goes to zero, we have

JBL = JL→M = JM→R = −JBR . (47)

This, once again, is a fundamental property of NESS, which
is preserved by the RE.

The above discussion is with energy currents, but it holds
true for any other currents associated with other local con-
served quantities, for example, particle currents.

D. Accuracy of currents from RE

Although the local continuity equations are always satis-
fied by RE, the currents obtained from RE are only accurate
to O(ε2). This can be seen noting that the currents inside the
system are given by coherences in the energy eigenbasis, as
shown by Eqs. (10) and (13). To see this explicitly, we write
JL→M in the steady state as

JL→M = −i 〈[ĤM , ĤL]〉
= −i 〈[ĤS, ĤL]〉

= i
D∑

α,ν=1

(Eα − Eν )〈Eα| ˆ̃ρNESS|Eν〉〈Eν |ĤL|Eα〉
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= iε2
D∑

α,ν=1

(Eα − Eν )〈Eα| ˆ̃ρ
(2)
NESS|Eν〉〈Eν |ĤL|Eα〉

+ higher orders. (48)

In the last line, we have used the fact that the leading order
coherences are O(ε2). Since the coherences obtained from
RE are given correctly only to O(ε2), any higher-order term
obtained from the RE cannot be trusted. Similar expressions
can be written for JM→R or any other currents related to other
local conserved quantities.

The fact that currents obtained from RE are correct to
O(ε2) can also be seen by calculating the currents from the
baths. Carrying out the trace in Eq. (44) in the energy eigen-
basis of the system, the currents from the baths can be written
as

JB

= ε2

∑
α

Eα〈Eα|L(
)
2

[
ˆ̃ρ

(0)
NESS

]|Eα〉

+ ε4
∑

α

Eα〈Eα|L̂(
)
2

[
ˆ̃ρ

(2)
NESS

]|Eα〉

+ higher orders, where 
 = L, R. (49)

This shows that the leading order currents from the baths
are O(ε2) and depend on ˆ̃ρ

(0)
NESS which, as shown before, is

diagonal in the energy eigenbasis and is given correctly by
the RE. In other words, the leading order currents from the
baths are determined by the leading order populations in the
energy eigenbasis. On the other hand, the O(ε4) term contains
contributions from both the diagonal and the off-diagonal
elements of ˆ̃ρ

(2)
NESS in the energy eigenbasis of the system.

Since the diagonal elements of ˆ̃ρ
(2)
NESS in the energy eigenbasis

of the system are not given correctly by RE, currents from RE
will carry O(ε4) error.

A particularly critical condition arises when, on physical
grounds, the currents are zero, for example, when the tem-
peratures and the chemical potentials of the baths are the
same, βL = βR = β, μL = μR = μ. In this case, the O(ε2)
contribution to currents obtained from RE will be zero since
this is given correctly. But, the O(ε4) term, which can contain
an error, may not be zero. This will give unphysical O(ε4)
currents even when the current is expected to be zero on
physical grounds. Knowing this, it is, however, possible to
clearly identify such spurious unphysical currents stemming
from inaccuracies of RE by checking the scaling of the cur-
rents with ε. If the scaling is O(ε2), the currents obtained from
RE can be trusted. If the scaling is O(ε4), it shows that the
O(ε2) contribution to the currents is zero. The currents must
be taken as zero within the accuracy of RE in that case. This
was explicitly used in Ref. [58] (see the supplemental material
of Ref. [58]).

Another interesting point to note from Eqs. (48), (49),
and (47) is that the O(ε2) coherences, the O(ε0) populations
in the energy eigenbasis, and the preservation of local conser-
vation laws are tightly related to one another. If either one of
the populations and the coherences is given accurately, while
the other is not, it will lead to violation of the local continuity
equations.

It is clear from the discussion in this section that the only
drawback of the RE is the lack of complete positivity. In the
next section, we look in detail at one recent attempt to rigor-
ously rectify this drawback, and show that it violates some of
the other required conditions in Table I. We also make some
general comments on all existing weak system-bath-coupling
Lindblad descriptions.

IV. THE UNIVERSAL LINDBLAD EQUATION

As mentioned before, we need to go beyond the standard
Lindblad equations in local and eigenbasis forms, LLE and
ELE, to satisfy the required conditions in Table I. Since the RE
is microscopically derived and satisfies all other requirements
except for the complete positivity, it is intuitive that any QME
satisfying the required conditions should give results close
to RE. Recently, a Lindblad equation, called the universal
Lindblad equation (ULE) [40], was rigorously derived such
that it is of Lindblad form, while maintaining∣∣∣∣ρ̂ULE

NESS − ρ̂NESS

∣∣∣∣ ∼ || ˆ̃ρNESS − ρ̂NESS|| ∼ O(ε2), (50)

where ρ̂ULE
NESS is the NESS density matrix obtained from ULE.

The ULE reduces to the LLE and the ELE with further
approximations in appropriate limits [40]. Moreover, as dis-
cussed in [40,42], it is closely related to other recently derived
Lindblad equations to go beyond ELE and LLE. This makes
the study of ULE in light of the fundamental requirements
representative of existing Lindblad equation approaches.

A. The general form of ULE

The ULE approach requires the system-bath coupling to
be written in terms of Hermitian operators. So we write the
system-bath coupling as ĤSB = ∑′




∑
k=1,2 X̂(
,k)B̂(
,k), where

X̂(
,1) = Ŝ†

 + Ŝ
, X̂(
,2) = i(Ŝ
 − Ŝ†


 ),

B̂(
,1) =
∞∑

r=1

κr
B̂(
)†
r + κ∗

r
B̂(
)
r

2
,

B̂(
,2) = i
∞∑

r=1

κ∗
r
B̂(
)

r − κr
B̂(
)†
r

2
. (51)

The system-bath coupling is then given in the form

ĤSB =
∑

λ

X̂λB̂λ, (52)

where λ = (
, k) is the combined index. The ULE is of the
form

∂ρ̂

∂t
= i[ρ̂, ĤS] + ε2L̂′

2[ρ̂],

L̂′
2[ρ̂] = i[ρ̂, ĤLS] +

∑
λ

(
L̂λρ̂L̂†

λ − 1

2
{L̂†

λL̂λ, ρ̂}
)

, (53)

with the Lindblad operators and the Lamb-shift Hamiltonian
given by

L̂λ =
∑
λ′

∫ ∞

−∞
ds̃gλ,λ′ (s)X̂λ′ (−s),

ĤLS = 1

2i

∫ ∞

−∞
ds

∫ ∞

−∞
ds′ ∑

λ,λ′
X̂λ(s)X̂λ′ (s′)φλλ′ (s, s′), (54)
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where X̂λ(t ) = eiĤSt X̂λe−iĤSt denotes the interaction picture
operator. The matrices φ(t, s) and g̃(t ) are

g̃(t ) =
∫ ∞

−∞
dωg(ω)e−iωt , φ(t, s) = g̃(t )̃g(−s)sgn(t − s),

g(ω) =
√

G(ω)

2π
, Gλ,λ′ (ω) =

∫ ∞

−∞

dt

2π
〈B̂λ(t )B̂λ′ (0)〉B eiωt ,

(55)

with sgn(x) being the sign function, and 〈·〉B denoting the
expectation value taken over the bath initial state. Given this
general form of the ULE, we now investigate if the ULE
satisfies the fundamental requirements in Table I.

B. Accuracy of ULE

1. Accurate populations but inaccurate coherences

As mentioned before, the ULE has been derived so that the
steady state it predicts differs from the exact steady state in
O(ε2). This means that the O(ε0) term of the NESS density
matrix must be given correctly by the ULE, and hence would
match that from RE. Here we explain how to see this explic-
itly, in general.

For this, we write ˆ̃ρ
(0)
NESS in the energy eigenbasis, as in

Eq. (18), and explicitly evaluate the term required by the first
condition in Table I,

〈Eα|L̂′
2

[
ˆ̃ρ

(0)
NESS

]|Eα〉

=
∑
ν,λ,λ′

2π pν

{
〈Eα| X̂λ′ |Eν〉 〈Eν | X̂λ |Eα〉 Gλ,λ′ (Eν − Eα )

−
∑

γ

〈Eα| X̂λ |Eγ 〉 〈Eγ | X̂λ′ |Eα〉 Gλ,λ′ (Eα − Eγ )δαν

}
.

(56)

We need to compare this result with that obtained from RE to
check the first condition in Table I. To do this, it is easier to
write the RE also in the form where the system-bath-coupling
terms are Hermitian operators, as in Eq. (52). The RE for this
form of coupling is given by

∂ρ̂

∂t
= i[ρ̂, ĤS] − ε2

∑
λ,λ′

([X̂λ, X̂λ′λρ̂] + H.c.), (57)

with

X̂λ′λ =
∫ ∞

0
dt ′〈B̂λ(t ′)B̂λ′ (0)〉X̂λ′ (−t ′)

=
∫ ∞

0
dt ′

∫ ∞

−∞
Gλ,λ′ (ω)e−iωt ′

X̂λ′ (−t ′). (58)

Using Eq. (51), it can be checked that Eq. (57) can be
reduced to Eq. (37). With Eq. (57), direct evaluation of
〈Eα|L̂2[ ˆ̃ρ

(0)
NESS]|Eα〉 gives exactly the same expression as

Eq. (56). Thus the ULE explicitly satisfies the first condition
in Table I. Therefore, the leading order populations obtained
from ULE are the same as those from RE. It follows that
ULE also satisfies the thermalization condition, i.e., the third
condition in Table I. It is important to note that we do not

explicitly require the values of the populations pν to show that
the conditions are satisfied.

Using exactly similar steps, it can be checked that the ULE
does not satisfy the second condition in Table I. Thus, the
leading order coherences from ULE are not given correctly.
Since the leading order coherences in the energy eigenbasis
are O(ε2), this is consistent with the ULE having an error of
O(ε2) [see Eq. (50)].

2. Violation of local conservation laws

As we have already discussed, having correct populations
to leading order while having incorrect coherences leads to
the violation of local conservation laws. So, the ULE does not
satisfy the fourth requirement in Table I. This can be explicitly
seen by writing the evolution equation for any system opera-
tor,

d 〈Ô〉
dt

= −i 〈[Ô, ĤS + ĤLS]〉

+
∑

λ

1

2

(〈[L̂†
λ, Ô]L̂λ〉 + 〈L̂†

λ[Ô, L̂λ]〉). (59)

From the form of the operators L̂λ in Eq. (54), we see that even
if [Ô, ĤSB] = 0, Tr[ÔL̂′

2(ρ̂)] 	= 0.

3. Accuracy of currents from ULE

Despite this violation of local conservation laws, the ULE
gives the correct currents from the baths to the leading order.
This can be seen by writing the ULE in the form of Eq. (42)
and defining the corresponding currents as in Eq. (44). The
currents can then be written in the energy eigenbasis, as in
Eq. (49), to see that the leading order contributions are given
by the O(ε0) populations in the energy eigenbasis. Since these
terms are given accurately by the ULE, it follows that the
currents from the baths are given accurately to O(ε2) and
agree with the same currents obtained from RE. The error in
the currents from the baths as obtained from ULE is therefore
O(ε4), which is the same as that from RE.

However, since the coherences in the energy eigenbasis
contain O(ε2) error in ULE, the currents inside the system,
defined in Eq. (10), will have an error in the leading order.
This, once again, shows that local conservation laws will be
violated. Note that this is true even when the temperatures
and chemical potentials of all the baths are the same. So,
even though the ULE satisfies the thermalization condition
(the third condition in Table I), due to incorrect coherences,
it can give unphysical O(ε2) currents inside the system in the
absence of any temperature or chemical potential bias.

C. General comments regarding Lindblad equations

We end this section with some general comments regarding
Lindblad equations. We have already mentioned that the ULE
is closely related to some of the other Lindblad equations de-
vised to go beyond the limitations of ELE and LLE. It is
worth mentioning that to our knowledge, all existing Lindblad
equations [40–45] except the LLE violate the fourth condition
in Table I, thereby violating local conservation laws. The
LLE, on the other hand, is known to not satisfy the thermal-
ization requirement, the third condition in Table I. Further,
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although explicitly satisfying the local conservation laws, it
does not always give the correct currents in NESS [16,17,23–
38]. This is contrary to the ULE, which, despite violating
local conservation laws, gives correct currents from the baths
to the leading order. The RE, on the other hand, except for
generically violating the requirement of complete positivity,
satisfies all other the conditions in Table I. It therefore seems
that a weak system-bath-coupling QME respecting all the con-
ditions in Table I is generically impossible. In particular, since
currents inside the system are related to coherences, and cur-
rents from the baths are related to populations, it seems that no
weak system-bath-coupling QME can generically satisfy the
requirement of complete positivity and simultaneously give
correct populations and coherences to the leading order. Thus,
all weak system-bath-coupling Lindblad equations seem fun-
damentally limited. While this is true for the existing QMEs
to our knowledge, a general proof of the fact is still missing.
We leave the general proof of this to future work. Although
all the results above have been derived keeping a setup of the
form of Fig. 1 in mind, these can be easily carried forward to
cases where there are more than two baths.

Our discussion until now has been general. We have not
yet written any particular system Hamiltonian or chosen any
particular bath spectral function. This completely general dis-
cussion of the accuracy of QMEs sets apart our work from
most previous works [16,17,23–38], where the accuracy is
discussed referring to a particular model. In the following,
we numerically check our general discussion in the three-site
Heisenberg model coupled to bosonic baths.

V. NUMERICAL RESULTS

We now numerically exemplify the above discussion by
using a XXZ spin chain in the presence of a magnetic field,
with the first and the last sites attached to baths modeled by
infinite number of bosonic modes,

ĤS =
N∑


=1

ω
(
)
0

2
σ̂ 


z −
N−1∑

=1

g
(
σ̂ 


x σ̂ 
+1
x + σ̂ 


y σ̂ 
+1
y + �σ̂ 


z σ̂ 
+1
z

)
,

ĤSB =
∑


=1,N

∞∑
r=1

(
κ
rB̂(
)†

r σ̂ 

− + κ∗

lr B̂(
)
r σ̂ 


+
)
, (60)

where σ̂ 

x,y,z denotes the Pauli matrices acting on the 
th

spin, σ̂ 

+ = (σ̂ 


x + iσ̂ 

y )/2, σ̂ 


− = (σ̂ 

x − iσ̂ 


y )/2, and B̂(
)
r is the

bosonic annihilation operator for the rth mode of the bath
attached at the 
th site. Here, ω

(
)
0 , g, and g� represent

the magnetic field, the overall spin-spin coupling strength,
and the anisotropy, respectively. The total number of exci-
tations in the system is given by N̂S = ∑N


=1 σ̂ 

+σ̂ 


− and it
satisfies [N̂S, ĤS] = 0. We consider bosonic baths described
by Ohmic spectral functions with Gaussian cutoffs, J
(ω) =∑

k 2π |κ
k|2δ(ω − �

k ) = ωe−(ω/ωc )2

�(ω), where �(ω) is the
Heaviside step function and ωc is the cutoff frequency. The
setup is exactly of the form of Fig. 1, with the initial inverse
temperatures and chemical potentials of the baths as shown.
We look at the equilibrium and nonequilibrium steady states
as obtained by RE, LLE, ELE, and ULE. The explicit forms of
all these equations for the XXZ spin chain are given in Appen-

dices A, B, C, and D, respectively. For numerical simplicity,
we consider the N = 3 case, which is sufficient to demonstrate
the fundamental limitations of all three Lindblad equations.
All numerical results below are obtained using QUTIP [59,60].

First, we look at the equilibrium case (top row of Fig. 2),
βL = βR = β, μL = μR = μ, and calculate the trace dis-
tance [46], D(ρ̂eq, ρ̂th ) = Tr[

√
(ρ̂eq − ρ̂th )2]/2, between the

steady state ρ̂eq given by the three QMEs and the thermal

state ρ̂th = e−β(ĤS−μN̂S )

Tr(e−β(ĤS−μN̂S ) )
. The trace distance D(ρ̂eq, ρ̂th ) is

plotted as a function of g for ε = 0.1 in Fig. 2(a). We see
that the trace distance is quite small and of the same order
for RE and ULE, and does not vary much with g. On the other
hand, the trace distance for LLE is larger and grows with g,
while that for ELE is identically zero. Note that generically
any system is expected to have steady-state coherences in
the energy eigenbasis in equilibrium [58,61] for any finite ε

and convergence to ρ̂th is physically only expected for ε → 0.
Nevertheless, as shown in Fig. 2(b), observables such as local
magnetizations 〈σ̂ 


z 〉, obtained from ULE and RE, show a very
small difference from the thermal expectation values since
they depend on populations in leading order.

The same is not true for the spin currents. The bond
spin currents in the system I j are defined from the conti-

nuity equation d〈σ̂ j
z 〉

dt = −i 〈[σ̂ j
z , ĤS]〉 = I j − I j−1, which gives

I j = 4ig(〈σ̂ j
+σ̂

j+1
− 〉 − 〈σ̂ j

−σ̂
j+1

+ 〉). On the other hand, boundary

spin currents are defined by the continuity equation d〈M̂z〉
dt =

IBL + IBR , where M̂z = ∑N

=1 σ̂ 


z . For equations of the form
given by Eq. (42), IB


= ε2Tr(M̂zL̂(
)
2 [ρ̂(t )]), 
 = L, R, where

L̂(
)
2 changes depending on the QME used. In the steady state,

local conservation laws require I1 = −IBL = I2 = IBR . Further,
in equilibrium, currents should be zero [27]. We find that
for ω

(1)
0 	= ω

(2)
0 	= ω

(3)
0 , all QMEs except ELE give unphysical

currents, even though we have βL = βR = β, μL = μR = μ.
However, it is paramount to note that as shown in Fig. 2(c),
the currents from RE and the boundary currents from ULE
scale as ε4, clearly showing that the leading order term O(ε2)
is zero. This is completely consistent with our discussion in
Secs. III D and IV B 3. On the other hand, the bond currents
from ULE are different and scale as ε2, thereby showing error
in leading order and violating local conservation laws. The
LLE does not violate local conservation laws, but still gives
equilibrium currents scaling as ε2 [27], thereby showing lead-
ing order inaccuracies in both populations and coherences.

Now we discuss the results for the nonequilibrium setup
(bottom row of Fig. 2), βL 	= βR. The currents in NESS as
a function of g are shown in Fig. 2(d). The current from
RE matches the boundary current from ULE for all g and
shows a nonmonotonic behavior with g. On the other hand,
LLE fails to capture the nonmonotonicity of the current as
a function of g, and matches only at very small values of g.
The ELE identically gives zero currents inside the system,
even in NESS [24]. However, the boundary currents from ELE
seem to match reasonably well with RE for sufficiently high
g. Thus, the ELE also violates the local conservation laws in
NESS. The local magnetizations in NESS also match from RE
and ULE and are significantly different from the LLE and ELE
results at high and low g, respectively, as shown in Fig. 2(e).
Finally, in Fig. 2(f), we demonstrate that ULE bond currents
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FIG. 2. The top row is for the equilibrium case (βL = 1, βR = 1) and the bottom row is for the nonequilibrium case (βL = 5, βR = 0.5).
Apart from (c), in all other cases, ω

(1)
0 = ω

(2)
0 = ω

(3)
0 = 1. (a) The trace distance between the expected thermal state ρ̂th and the equilibrium

steady state ρ̂eq as obtained by the LLE, ULE, and RE as a function of g. (b) The local magnetization in the equilibrium steady state as obtained
by LLE, ULE, RE, and ELE and by the expected thermal state as a function of g. (c) The scaling of spin currents in equilibrium as given by
LLE, ULE, and RE as a function of system-bath-coupling strength ε, for the case where ω

(1)
0 = 1, ω

(2)
0 = 1.5, ω

(3)
0 = 2. Here, IULE

1 , IULE
2 , and

IULE
B refer to the two bond currents and the boundary current as obtained by ULE. (d) Spin currents in NESS as obtained by LLE, ULE, RE,

and ELE. For ULE and ELE, only the boundary currents IULE
B and IELE

B are plotted. (For ELE, the bond currents are exactly zero.) (e) The
local magnetization in NESS as obtained by LLE, ULE, RE, and ELE as a function of g. (f) The scaling of the difference between the two
bond currents at NESS from ULE as a function of system-bath-coupling strength ε. Other parameters: μL = μR = −0.5, ωc = 10. All energy
parameters are in units of ω

(1)
0 .

are different in NESS with the difference scaling as O(ε2),
which highlights a clear violation of local conservation laws
in ULE.

All plots in Fig. 2 are made with ω
(1)
0 = ω

(2)
0 = ω

(3)
0 = 1,

except for Fig. 2(c) which was plotted for ω
(1)
0 = 1, ω

(2)
0 =

1.5, ω
(3)
0 = 2. In Fig. 3, we give the complementary plot,

FIG. 3. The top row is for the equilibrium case (βL = 1, βR = 1) and the bottom row is for the nonequilibrium case (βL = 5, βR = 0.5).
Apart from (c), everywhere, ω

(1)
0 = 1, ω

(2)
0 = 1.5, ω

(3)
0 = 2. (a) The trace distance between the expected thermal state ρ̂th and the equilibrium

steady state ρ̂eq as obtained by the local Lindblad (LLE), universal Lindblad (ULE), and and Redfield (RE) equations as a function of g. (b) The
local magnetization in the equilibrium steady state as obtained by LLE, ULE, RE, and ELE and by the expected thermal state as a function
of g. (c) The scaling of bond spin currents in equilibrium as obtained from ULE, IULE

1 , IULE
2 , for the case where ω

(1)
0 = ω

(2)
0 = ω

(3)
0 = 1. The

LLE, RE, and ULE boundary currents are zero correct to numerical precision of 10−16. (d) Spin currents in NESS as obtained by LLE, ULE,
RE, and ELE. For ULE and ELE, the boundary currents IULE

B and IELE
B are plotted. (e) The local magnetization in NESS as obtained by LLE,

ULE, RE, and ELE as a function of g. (f) The scaling of the difference between the two bond currents at NESS from ULE as a function of
system-bath-coupling strength ε. Other parameters: μ1 = μ2 = −0.5, ωc = 10. All energy parameters are in units of ω

(1)
0 .
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TABLE II. Accuracy of various QMEs in various settings.

LLE ELE ULE RE

Diagonal (populations) O(1) wrong O(1) wrong in NESS O(1) correct O(1) correct
Off-diagonal (coherences) O(ε2) wrong O(ε2) wrong O(ε2) wrong O(ε2) correct
Conservation laws Conserved Violated Violated Conserved
Thermalization Violated Preserved Preserved Preserved
Currents from baths Valid for g � ε Valid for |Eα − Eγ | � ε Valid for all g Valid for all g
Currents in system Valid for g � ε Zero O(ε2) wrong O(ε2) correct
Complete positivity Preserved Preserved Preserved Violated

where all numerical results except Fig. 3(c) are for ω
(1)
0 =

ω
(2)
0 = ω

(3)
0 = 1, while Fig. 3(c) is for ω

(1)
0 = 1, ω

(2)
0 =

1.5, ω
(3)
0 = 2. Two important things are worth noticing. First,

when ω
(1)
0 = ω

(2)
0 = ω

(3)
0 , none of the LLE, RE, and ULE

boundary currents give any unphysical nonzero result (correct
to a numerical precision of 10−16) if βL = βR = β, μL =
μR = μ. However, the ULE bond currents still give nonzero
O(ε2) result and thereby violate local conservation laws. Sec-
ond, for ω

(1)
0 = 1, ω

(2)
0 = 1.5, ω

(3)
0 = 2, because of the already

large separation between the on-site magnetic fields, the sec-
ular approximation performs much better and, as a result,
ELE gives reasonably accurate results both in the equilibrium
and out-of-equilibrium steady states, for a wide range of g.
However, ELE, by construction, gives zero currents inside the
system [24]. Table II summarizes the accuracies and valid-
ity regimes of the various QMEs. Although our numerical
demonstration is for N = 3, our analytical understanding in
previous sections shows that these issues persist for larger N ,
as well as generically for other systems.

VI. SUMMARY AND DISCUSSIONS

In this work, we have investigated the fundamental limi-
tations of QMEs obtained in the weak system-bath-coupling
approach to describe a quantum system coupled to multiple
macroscopic baths which can be at different temperatures and
chemical potentials, in the absence of any external driving
(i.e., when the Hamiltonian is time independent). Micro-
scopically obtaining the QME up to leading order in the
system-bath coupling leads to the so-called Redfield form,
which is known to generically violate the requirement of
complete positivity. Very often, further approximations are
done on the Redfield form to reduce it to a Lindblad form,
so that complete positivity is restored. We have laid down
some fundamental requirements (Table I) that any such ap-
proximation must satisfy. If they are violated, there occur
physical inconsistencies such as inaccuracies in the leading
order populations and coherences in the energy eigenbasis,
violation of thermalization when all baths have the same
temperatures and chemical potentials, and violation of local
conservation laws at NESS. This has allowed us to check
for the occurrence of these physical inconsistencies in weak
system-bath-coupling QMEs in general, without writing them
for any particular model. This model-independent general
discussion distinguishes our work from most previous works
investigating the accuracies of various QMEs [16,17,23–37].

We have found that the Redfield equation, despite being
generically not completely positive, does not violate any of
the other fundamental requirements. It therefore gives cor-
rect populations and coherences in the energy eigenbasis to
the leading order, shows thermalization, and preserves local
conservation laws. On the other hand, weak system-bath-
coupling Lindblad descriptions violate one or more of the
fundamental requirements and thereby have one or more of
the physical inconsistencies mentioned above, despite being
completely positive. In particular, it can be argued that no
existing weak system-bath-coupling Lindblad description, to
our knowledge, can generically give both correct populations
and correct coherences to the leading order. As an example,
we have explicitly shown these violations in generality for
the so-called universal Lindblad equation, which has been re-
cently derived. We have also numerically demonstrated these
statements in a three-site XXZ chain coupled to two bosonic
baths. From our results, it seems that there is no consistent
way to correct the violation of complete positivity of the Red-
field equation without going to higher orders in system-bath
coupling.

These results are extremely significant because weak
system-bath-coupling Lindblad equations remain the most
widely used descriptions of open quantum systems, and an
accurate description of populations, coherences, and currents
is important for quantum information and thermodynam-
ics [46–56]. It seems the Redfield equation, despite not being
completely positive, should be the description of choice.
The various errors in the Redfield equations are controlled.
Whether or not a result obtained from the Redfield equa-
tion can be trusted can be determined by checking its scaling
with system-bath-coupling strength. Further, there have been
techniques suggested to infer the next order corrections to
populations in a steady state from the Redfield equation with-
out actually writing the next higher-order QME [62–64].
These techniques may be able to correct the positivity issues
in the steady state obtained from the Redfield equation [58].

It is paramount to mention that the fundamental limitations
of Lindblad descriptions discussed in this paper pertain to the
case of a system weakly coupled to multiple thermal baths
in the absence of any external driving. In the presence of
particular kinds of driving, Lindblad equations can be micro-
scopically derived even for strong system-bath coupling [65].
Our results do not pertain to those descriptions. Further, our
results do not pertain to cases where the Lindblad dissipators
do not act on the system, but rather on the bath degrees
of freedom. Such approaches can be shown to accurately
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describe the steady state of the system for arbitrary strength
of system-bath coupling [66]. Our results, however, do show
that it is imperative to go beyond weak system-bath-coupling
QMEs for a physically consistent description of open quantum
systems.
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APPENDIX

The example we looked at in the main text is the three-site
Heisenberg model, coupled to two different bosonic baths at
the first and the third sites. Here, we will give the QMEs used
for this setup and write them for a Heisenberg spin chain of
length N .

APPENDIX A: REDFIELD EQUATION

The Redfield equation for our setup is given by

∂ρ̂

∂t
= i[ρ̂, ĤS]

− ε2
∑


=1,N

2N∑
α,γ=1

{[ρ̂ |Eα〉 〈Eα| σ̂ 

− |Eγ 〉 〈Eγ | , σ̂ l

+]C
(α, γ )

+ [
σ̂ 


+, |Eα〉 〈Eα| σ̂ l
− |Eγ 〉 〈Eγ | ρ̂]

D
(α, γ ) + H.c.},
(A1)

with

C
(α, γ ) = J
(Eγα )n
(Eγα )

2
− iP

∫ ∞

0
dω

J
(ω)n
(ω)

ω − Eγα

,

D
(α, γ ) = eβ
(Eγ α−μ
 )J
(Eγα )n
(Eγα )

2

− iP
∫ ∞

0
dω

eβ
(ω−μ
 )J
(ω)n
(ω)

ω − Eγα

, (A2)

where P denotes the Cauchy principal value. Here, |Eα〉 and
|Eγ 〉 are simultaneous eigenkets of the system Hamiltonian
and the magnetization operator, with eigenenergies Eα and Eγ ,
where Eγα = Eγ − Eα .

APPENDIX B: LOCAL LINDBLAD EQUATION

The local Lindblad equation, which can be derived mi-
croscopically for g � ε, from the Redfield equation, is given

by

∂ρ̂

∂t
= i[ρ̂, Ĥ + ĤLS] + ε2

∑

=1,N

J


(
ω

(
)
0

)(
n


(
ω

(
)
0

) + 1
)

×
(

σ̂ 

−ρ̂σ̂ 


+ − 1

2
{σ̂ 


+σ̂ 

−, ρ̂}

)
+ J


(
ω

(
)
0

)
n


(
ω

(
)
0

)(
σ̂ 


+ρ̂σ̂ 

− − 1

2
{σ̂ 


−σ̂ 

+, ρ̂}

)
, (B1)

where ĤLS = ∑

=1,N (�
 + 2�

′

)ω

(
)
0
2 , and �
 and �

′

 are

given by

�
 = P
ε2

2π

∫ ∞

0
dω

J
(ω)

ω
(
)
0 − ω

,

�
′
i = P

ε2

2π

∫ ∞

0
dω

J
(ω)n
(ω)

ω
(
)
0 − ω

. (B2)

APPENDIX C: EIGENBASIS LINDBLAD EQUATION

The eigenbasis Lindblad equation is obtained from the
Redfield equation by doing the so-called secular approxima-
tion [8]. This amounts to an equation of the form

∂ρ̂

∂t
= i[ρ̂, ĤS] − ε2

∑

=1,N

2N∑
α,γ=1

2N∑
α′,γ ′=1

Eγ ′α′ =Eγ α{
[ρ̂ |Eα〉 〈Eα| σ̂ 


− |Eγ 〉 〈Eγ | , |Eγ ′ 〉 〈Eγ ′ | σ̂ 

+ |Eα′ 〉 〈Eα′ |]

× C
(α, γ ) + [|Eγ ′ 〉 〈Eγ ′ | σ̂ 

+ |Eα′ 〉 〈Eα′ | ,

|Eα〉 〈Eα| σ̂ 

− |Eγ 〉 〈Eγ | ρ̂]D
(α, γ ) + H.c.

}
, (C1)

where the Cl and Dl constants are the same as in Redfield,
given by Eq. (A2).

APPENDIX D: UNIVERSAL LINDBLAD EQUATION

The universal Lindblad equation for our setup is derived
from the steps described in [40]. The ULE equation is then
given by

∂ρ̂

∂t
= −i[ĤS + ĤLS, ρ̂]

+
∑

,k

(
L̂(
,k)ρ̂L̂†

(
,k) − 1

2
{L̂†

(
,k)L̂(
,k), ρ̂}
)

. (D1)

The Lamb shift ĤLS and Lindblad operators L̂(
,k) are given by

L̂(
,k) = 2πε
∑

α,γ ,
′,k′
g(
,
′,k,k′ )(Eγα )X (
′,k′ )

αγ |Eα〉 〈Eγ | ,

ĤLS =
∑

αγ η;
k
′k′
X (
,k)

αη X (
′,k′ )
ηγ f 
,
′,k,k′ (Eαη, Eγ η ) |Eα〉 〈Eγ | ,

(D2)
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where X (
,k)
αγ = 〈Eα| X̂(
,k) |Eγ 〉, and

f (p, q) = −2πε2P
∫ ∞

−∞
dω

g(ω − p)g(ω + q)

ω
. (D3)

Note that g(
,
′,k,k′ ) should be treated as a matrix with row
index (
, k) and column index (
′, k′). Thus, [g(ω − p)g(ω +
q)](
,
′′,k,k′′ ) = ∑

(
′,k′ ) g(ω−p)(
,
′,k,k′ )g(ω + q)(
′,
′′,k′,k′′ ). The
g(ω) matrix captures the effect of the bath on the system, and

can be evaluated to be

g(
,
′,k,k′ )(ω) = δ
,
′

⎧⎪⎪⎨⎪⎪⎩
√
J
(−ω)n
(−ω)

4
√

2π

(
1 i
−i 1

)
k,k′

if ω < 0,

√
J
(ω)(1+n
(ω))

4
√

2π

(
1 −i
i 1

)
k,k′

if ω > 0.

(D4)
As in the Redfield case, |Eα〉, |Eγ 〉 are eigenkets of
the system Hamiltonian with eigenenergies Eα and Eγ ,
and Eγα = Eγ − Eα .
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