Role of the nucleotide excision repair pathway proteins (UvrB and UvrD2) in recycling UdgB, a base excision repair enzyme in Mycobacterium smegmatis

Running title: $U v r B$ and $U v r D 2$ facilitate turnover of $A P$-site bound $U d g B$

Indu Kapoor ${ }^{\text {a }}$, Abhirup Shaw $^{\text {a }}$, Arindam Naha ${ }^{\text {a }}$, Elhassan Ali Fathi Emam ${ }^{\text {a }}$ and Umesh Varshney ${ }^{\text {a, }, \text {, * }}$
${ }^{\text {a }}$ Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
${ }^{\text {b }}$ Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
*Correspondence to: Umesh Varshney, Phone: +918022932686 , Fax: +918023602697 , E-mail: varshney@iisc.ac.in, uvarshney@gmail.com

Keywords: UdgB, UvrD2, UvrB, Nucleotide excision repair, Transcription Coupled Repair, mycobacteria

S1. Supplementary Methods

S1.1. Generation of constructs: pJAM2 and its derivatives, pJAM_FLAG and pJAMH_His, were used to overexpress and purify proteins. To derive pJAM_FLAG, a DNA sequence encoding FLAG-tag followed by a stop codon was introduced at XbaI restriction site, using oligomers UVL1 and UVL2. The plasmid pJAM_FLAG retains a single XbaI restriction site before the FLAG-tag and His6-tag present after FLAG-tag is not translated. A hygromycin resistant version of pJAM2 plasmid, pJAMH_His, was made by deleting $\operatorname{Kan}^{\mathrm{R}}$ cassette using NdeI restriction site. The vector fragment was end-filled by Klenow DNA polymerase, purified by phenol-chloroform extraction, and ligated with Hyg $^{\mathrm{R}}$ cassette excised from $\mathrm{pMV} 261^{\text {hyg }}$ using HpaI and DraI restriction sites.

The PCR carried out in $20 \mu \mathrm{l}$ volume contained 250 ng genomic DNA of $M s m \mathrm{mc}^{2} 155$ strain, 0.5 units of Q5 DNA polymerase (NEB), 1X Q5 reaction buffer, 1X GC enhancer, 250 $\mu \mathrm{M}$ dNTPs, and 10 pmol each of the forward and reverse primers. Reaction conditions included an initial denaturation at $98^{\circ} \mathrm{C}$ for 2 min , followed by 30 cycles of $98^{\circ} \mathrm{C}$ for $40 \mathrm{~s}, 50-60^{\circ} \mathrm{C}$ for 35 s and $72^{\circ} \mathrm{C}$ for $1-3 \mathrm{~min}$ and a final extension at $72^{\circ} \mathrm{C}$ for 5 min .

For cloning in one or more plasmids, pJAM2, pJAM_FLAG and pJAMH_His, ORFs (MSMEG_5031 (Msm_udgB), MSMEG_5423 (Msm_mfd), MSMEG_5534 (Msm_uvrDI), MSMEG_1952 (Msm_uvrD2), and MSMEG_2758 (Msm_mysA)) from Msm mc² 155 were PCR amplified using the respective primers with flanking BamHI or XbaI cloning sites (Table S1). Purified PCR products were ligated with the vector DNAs using BamHI and/or XbaI restriction sites, to obtain C-terminally His 6 -tagged or FLAG-tagged proteins. In parallel, pJAM2 harboring a C-terminally truncated variant of Msm_mfd, encoding the first 1040 amino acids was also generated using Msm_mfd_BamHI_Fp and Msm_mfd_1040_XbaI_Rp primers.

To generate pMV261h_udgB, Msm_udgB encoding ORF, MSMEG_5031, was PCR amplified using the phosphorylated primers $M s m_{-} u d g B_{-}$PFp (binds 187 bp upstream of ORF) and $M s m _u d g B_{-}$Rp (binds 123 bp downstream of ORF). PCR amplicon (1200 bp) was ligated into PvuII digested pMV261hyg vector.

Table S1. List of DNA oligomers used in the study to generate constructs and verify strains

DNA oligomer	Sequence (5' to 3^{\prime}), restriction site is underlined
Msm_udgB_PFp	GACACCGGTACCGGCGATCAGTG
Msm_udgB_Rp	CAGAAGCTTTGGTATCCGAGCCG
Msm_udgB_BamHI_Fp	CTGGTGGGATCCATGGGACCGATTTTC
Msm_udgB_XbaI_Rp	CGGTCATCTAGATTGCCCGTCACG
Msm_uvrD1_BamHI_Fp	TACGGATCCATGACTTCCCCC
Msm_uvrD1_XbaI_Rp	GGAGTCTAGAGAGCTTCTGCAG
Msm_uvrD2_BamHI_Fp	CGGTGTGGATCCTTGTCGGGCGGT
Msm_uvrD2_XbaI_Rp	GCAGCATCTAGACGAATCGTGGCGGTT
Msm_mfd_BamHI_Fp	ATCCAGGATCCATGACCGCACCG
Msm_mfd_XbaI_Rp	GCACCTTCTAGATCGCTTCGCCTC
Msm_mfd_1040_XbaI_Rp	GGACTTCTAGACGGTGTGGCAAC
Msm_mysA_XbaI_Fp	AGGCTCTAGAGTGGCAGCGACAAAG
Msm_mysA_XbaI_Rp	CATTTCTAGACTAGTCCAGGTAGTCGCG
UVL1	CTAGAGACTACAAGGACGACGACGACAAGTGAG
UVL2	CTAGCTCACTTGTCGTCGTCGTCCTTGTAGTCT
MsuvrB-Fp	CGCACCGGCAAACCCTTCG (binds 117 bps inside the ORF)
MsuvrB-Rp	CGCGAATTCAGTCACGACGAC (binds 50 bps downstream the ORF)

S1.2. Generation of Msm uvrB- udgB strain: The plasmid, pPR-Ms_uvrB-kan ${ }^{R}$, was electroporated in Msm $u d g B^{-}$for allelic exchange and the transformants were selected on LBT agar in the presence of Kan, Hyg and Gm at $30^{\circ} \mathrm{C}$. The transformants were inoculated in 2 ml of LBT Kan Hyg and incubated at $30^{\circ} \mathrm{C}$ for 2 days. Bacterial cultures were serially diluted till 10^{-2}, and aliquots of $50 \mu 1$ from each serial dilution were plated on LBT agar supplemented with Kan, Hyg and 10% sucrose. Following incubation at $39^{\circ} \mathrm{C}$ for 3 days, isolated colonies obtained on the plate were patched on LBT agar containing either Kan, Hyg and 10% sucrose or Hyg and Gm. Colonies that grew only on LBT agar plates containing Kan, Hyg and 10% sucrose were further verified by PCR using ORF primers, $M s u v r B-\mathrm{Fp}$ and $M s u v r B-\mathrm{Rp}$.

S1.3. Overexpression and purification of proteins

S1.3.1. MsmUvrA, MsmUvrB and MsmUvrC: N-terminally His6-tagged NER proteins were overexpressed and purified from Msm [1].

S1.3.2. MsmUdgB_FLAG and $\boldsymbol{M s m U d g B}$ _His \boldsymbol{H}_{6} : C-terminally FLAG-tagged UdgB (used for in vitro pulldown assays) was purified from $M s m \mathrm{mc}^{2} 155$ strain harboring the $\mathrm{pJAM} _u d g B_{-}$FLAG plasmid. A single colony from the transformation plate was inoculated in 2 ml LBT Kan and grown at $37{ }^{\circ} \mathrm{C}$, 180 rpm for 2 days. LBT Kan (50 ml) was inoculated with 1% of saturated culture and incubated at $37{ }^{\circ} \mathrm{C}$, 180 rpm for $12-14 \mathrm{~h}$. Inoculation of 31 LBT Kan was done with 1% primary culture and incubated at $37{ }^{\circ} \mathrm{C}, 160 \mathrm{rpm}$ till OD_{600} reached 0.6. Protein was expressed using 0.5% acetamide for 4 h . The cell pellet was washed and resuspended in ice-cold 25 ml lysis buffer ($50 \mathrm{mM} \mathrm{Na} 3 \mathrm{PO}_{4} \mathrm{pH} 7,50 \mathrm{mM} \mathrm{NaCl}, 10 \%$ glycerol, and $2 \mathrm{mM} \beta$ mercaptoethanol). The following steps were performed at $4{ }^{\circ} \mathrm{C}$. The cells were lysed by sonication and the lysate was subjected to centrifugation at $24 \mathrm{~K} \mathrm{rpm}, 4^{\circ} \mathrm{C}$ for 1 h . The soluble cell-free extract (CFE) was loaded on heparin column (GE Healthcare), washed with 5 column
volumes of lysis buffer containing 200 mM NaCl and the protein was eluted with a gradient $(0 \%$ to 100%) of NaCl in elution buffer [$50 \mathrm{mM} \mathrm{Na}_{3} \mathrm{PO}_{4} \mathrm{pH} 7,1 \mathrm{M} \mathrm{NaCl}, 10 \%$ glycerol (v/v) and 2 $\mathrm{mM} \beta$-mercaptoethanol) at a flow rate of $1 \mathrm{ml} / \mathrm{min}$ for 30 min . The fractions eluted with 500 mM to 800 mM NaCl were enriched for the desired protein. The protein containing fractions were pooled and dialyzed to gradually obtain 50 mM NaCl concentration. The dialyzed fraction was loaded on Mono-S (GE Healthcare), washed with 3 column volumes of lysis buffer and the protein was eluted with a gradient of NaCl as explained above. Near homogenous protein fractions were pooled, dialyzed against buffer $\left(50 \mathrm{mM} \mathrm{Na} 3 \mathrm{PO}_{4} \mathrm{pH} 7,150 \mathrm{mM} \mathrm{NaCl}, 50 \%\right.$ glycerol, $2 \mathrm{mM} \beta$-mercaptoethanol), quantified and stored at $-20{ }^{\circ} \mathrm{C}$.

Similarly, C-terminally His 6 -tagged UdgB (used for in vitro enzymatic reactions) was purified from Msm ung- strain harboring the $\mathrm{pJAMH} _u d g B_{_}$His plasmid. Protein was overexpressed as described above and purified as discussed before [2].

S1.3.3. Translocases: MsmMfd, MsmMfd_1040 and MsmUvrD2 were purified using the construct pJAM_mfd or pJAM_mfd_1040 or pJAM_uvrD2_His, respectively in $M s m \mathrm{mc}^{2} 155$. Proteins were expressed using 0.5% acetamide followed by $6-8 \mathrm{~h}$ incubation at $37{ }^{\circ} \mathrm{C}$ and 180 rpm. Like UvrA, all three proteins were expressed in the soluble fraction and C-terminally His6tagged proteins were purified by affinity chromatography (Ni-NTA) followed by size-exclusion chromatography.

S1.3.4. MsmRNAP: RNAP was purified from $M s m \mathrm{mc}^{2} 155 /$ pJAM_mysA strain by overexpressing the sigma factor, $\operatorname{SigA}\left(\sigma^{\mathrm{A}}\right)$, to enrich the RNAP holoenzyme with σ^{A} factor [3].

Table S2. List of DNA oligomers used for biochemical assays

DNA Oligomer	Sequence (5' to 3^{\prime}), complementary sequence is underlined	Description
GU9	CTCAAGTGUAGGCATGCTTTTGC ATGCCTGCACTTGA	37 nt long, makes a stem (16 bp) loop (4 nt) structure and contains $\mathrm{G}: \mathrm{U}$ at $9^{\text {th }}$ position in stem
GU26	GACTACGTACTGTCACGCTCAAG TGUAGGCATGCATCAGGCCAGA TCTGCTTTTTAGCAGATCTGGCC TGATGCATGCCTGCACTTGAGCG TGACAGTACGTAGTC	106 nt long, makes a stem (51 bp) loop (4 nt) structure and contains $\mathrm{G}: \mathrm{U}$ at $26^{\text {th }}$ position in stem
UVL3	CTACTACGTACTGTCAGGGGTCC ATUTTCACCGGAATCAGGCCAG ATCTGCTAGTCTAGAGGATGCTA AGGTC	73 nt long ssDNA containing uracil at $25^{\text {th }}$ position
UVL4	GCAGATCTGGCCTGATTCCGGTG AAGATGGACCCCTGACAGTACG TAGTAG	51 nt long and complementary to UVL3
5' Biotinylated SSU9	C(B)TCAAGTGUAGGCATGCAAG AGCT	24 nt long ssDNA harboring uracil at $9^{\text {th }}$ position and biotin modification at 5' end
UVL9	AGCTCTTGCATGCCTGCACTTGA GTAGTCTAGAGGATGC	39 nt long and complementary to biotinylated SSU9
5 Biotinylated oligomer	GAC(B)GCTGCCGAATTCTGGCTT GCTAAAGGATAGTCGAATTTTCT CATTTT	51 nt long ssDNA with biotin modification at 5 ' end [4]

S2. Supplementary Results

S2.1. Raw data for growth curves

NOTE: Values starred (*) and highlighted in blue color were excluded while plotting the growth curves.

Time (hours)	Msm WT/pMV261h (U)				Msm WT/pMV261h ($\mathbf{2} \mathbf{5} \mathbf{~ m M ~ H 2 O} \mathrm{O}_{2}$)			
0	0.106	0.103	0.102	0.105	0.11	0.114	0.107	0.108
3	0.148	0.157	0.156	0.161	0.166	0.176	0.156	0.16
6	0.148	0.153	0.147	0.152	0.135	0.143	0.132	0.132
9	0.197	0.201	0.199	0.206	0.152	0.169	0.161	0.161
12	1.533*	0.302	0.287	0.29	0.196	0.224	0.199	0.203
15	0.432	0.474	0.456	0.458	0.299	0.347	0.317	0.315
18	0.645	0.717	0.691	0.686	0.463	0.542	0.485	0.495
21	0.863	0.915	0.896	0.89	0.665	0.778	0.766	0.759
24	1.047	1.099	1.083	1.083	0.882	0.979	0.964	0.956
27	1.184	1.237	1.216	1.232	1.078	1.163	1.144	1.157
30	1.263	1.302	1.287	1.304	1.241	1.28	1.268	1.293
33	1.312	1.34	1.313	1.323	1.318	1.336	1.342	1.363
36	1.317	1.35	1.321	1.346	1.349	1.353	1.36	1.379
39	1.327	1.359	1.317	1.342	1.369	1.374	1.372	1.397
42	1.32	1.339	1.318	1.333	1.377	1.372	1.382	1.411
45	1.336	1.345	1.317	1.33	1.359	1.361	1.369	1.387
48	1.321	1.339	1.312	1.328	1.363	1.364	1.364	1.38

Time (hours)	Msm WT/pMV261h_udgB (U)				Msm WT/pMV261h_udgB ($\mathbf{2} .5 \mathbf{~ m M ~ H} \mathbf{2}_{2} \mathrm{O}_{2}$)			
0	0.106	0.101	0.105	0.104	0.112	0.103*	0.11	0.114
3	0.162	0.153	0.167	0.162	0.166	0.143*	0.157	0.162
6	0.149	0.126	0.139	0.137	0.138	0.095*	0.121	0.125
9	0.195	0.154	0.174	0.171	0.168	0.094*	0.138	0.143
12	0.243	0.19	0.208	0.209	0.207	0.088*	0.162	0.165
15	0.335	0.272	0.27	0.283	0.281	0.094*	0.202	0.214
18	0.484	0.415	0.37	0.409	0.393	0.086*	0.254	0.273
21	0.691	0.648	0.522	0.58	0.584	0.092*	0.341	0.406
24	0.884	0.864	0.768	0.823	0.798	0.091 *	0.495	0.612
27	1.012	1.025	0.939	0.979	1.001	0.090*	0.787	0.861
30	1.104	1.139	1.053	1.098	1.152	0.086*	0.964	1.031
33	1.166	1.197	1.159	1.188	1.25	0.094*	1.125	1.169
36	1.191	1.22	1.193	1.225	1.292	0.088*	1.235	1.256
39	1.206	1.228	1.211	1.238	1.317	0.089*	1.297	1.315
42	1.201	1.229	1.207	1.246	1.329	0.092*	1.33	1.33
45	1.201	1.226	1.217	1.234	1.327	0.083*	1.326	1.332
48	1.211	1.226	1.223	1.237	1.34	0.088*	1.333	1.347

Time (hours)	Msm $\mathrm{urrB}^{-/ p M V 261 h ~(U) ~}$							
0	0.106	0.109	0.111	0.111	0.112	0.11	0.11	0.115
3	0.162	0.156	0.169	0.175	0.165	0.169	0.169	0.171
6	0.14	0.143	0.149	0.154	0.133	0.137	0.129	0.143
9	0.184	0.18	0.185	0.185	0.158	0.163	0.146	0.168

$\mathbf{1 2}$	0.245	0.234	0.256	0.245	0.19	0.195	0.169	0.195
$\mathbf{1 5}$	0.38	0.351	0.404	0.382	0.258	0.262	0.222	0.279
$\mathbf{1 8}$	0.581	0.528	0.612	0.573	0.359	0.361	0.292	0.363
$\mathbf{2 1}$	0.751	0.712	0.769	0.735	0.546	0.54	0.427	0.555
$\mathbf{2 4}$	0.894	0.833	0.909	0.844	0.732	0.741	0.625	0.703
$\mathbf{2 7}$	1	0.969	1.022	0.963	0.849	0.9	0.766	0.834
$\mathbf{3 0}$	1.089	1.067	1.09	1.067	0.998	1.047	0.91	0.98
$\mathbf{3 3}$	1.13	1.112	1.137	1.122	1.125	1.149	1.054	1.09
$\mathbf{3 6}$	1.152	1.142	1.159	1.143	1.167	1.181	1.115	1.125
$\mathbf{3 9}$	1.149	1.141	1.148	1.127	1.199	1.219	1.149	1.141
$\mathbf{4 2}$	1.14	1.135	1.136	1.127	1.206	1.224	1.159	1.159
$\mathbf{4 5}$	1.123	1.121	1.112	1.089	1.196	1.217	1.154	1.149
$\mathbf{4 8}$	1.106	1.123	1.107	1.068	1.19	1.2	1.16	1.157

Time (hours)	Msm uvrB'/pMV261h_udgB (U)				Msm $\mathrm{urrB}^{-} / \mathrm{pMV} 261 \mathrm{~h} _u d g B\left(\mathbf{2} .5 \mathrm{mM} \mathrm{H} \mathrm{O}_{2}\right.$			
0	0.109	0.107	0.109	0.105	0.107	0.109	0.109	0.106
3	0.158	0.168	0.179	0.167	0.158	0.156	0.16	0.159
6	0.143	0.144	0.153	0.136	0.11	0.122	0.135	0.11
9	0.151	0.154	0.168	0.147	0.116	0.13	0.149	0.830*
12	0.177	0.178	0.198	0.175	0.117	0.134	0.176	0.121
15	0.234	0.236	0.267	0.229	0.141	0.166	0.205	0.133
18	0.331	0.327	0.36	0.316	0.141	0.167	0.239	0.132
21	0.472	0.464	0.481	0.463	0.169	0.208	0.306	0.147
24	0.633	0.644	0.647	0.653	0.176	0.273	0.457	0.167
27	0.749	0.754	0.716	0.723	0.218	0.386	0.619	0.161
30	0.847	0.859	0.834	0.816	0.284	0.544	0.689	0.188
33	0.961	0.988	0.945	0.901	0.451	0.681	0.803	0.263
36	1.055	1.062	1.033	1.005	0.602	0.768	0.898	0.341
39	1.058	1.067	1.05	1.011	0.67	0.851	0.967	0.487
42	1.064	1.078	1.055	1.026	0.756	0.955	0.994	0.588
45	1.068	1.058	1.045	0.997	0.794	0.983	1.011	0.651
48	1.064	1.074	1.039	1.003	0.861	0.982	1.003	0.735

Time (hours)	Msm $u v r B^{-} \boldsymbol{u d g} B^{-}$				Msm uvrB ${ }^{-}$udg $B^{-}\left(2.5 \mathrm{mM} \mathrm{H} \mathrm{H}_{2}\right)$			
0	0.114	0.114	0.118	0.118	0.113	0.115	0.115	0.114
3	0.19	0.192	0.193	0.196	0.17	0.187	0.181	0.181
6	0.182	0.182	0.181	0.182	0.163	0.167	0.162	0.151
9	0.262	0.249	0.249	0.264	0.218	0.22	0.216	0.212
12	0.435	0.368	0.365	0.429	0.301	0.297	0.3	0.303
15	0.737	0.636	0.597	0.731	0.505	0.484	0.476	0.512
18	0.927	0.874	0.848	0.936	0.789	0.741	0.737	0.801
21	1.135	1.06	1.063	1.152	0.986	0.949	0.894	1.006
24	1.274	1.232	1.216	1.282	1.151	1.143	0.929	1.199
27	1.336	1.302	1.291	1.336	1.268	1.277	0.87	1.325
30	1.355	1.316	1.307	1.353	1.31	1.324	0.862	1.368
33	1.347	1.32	1.308	1.346	1.34	1.36	0.865	1.395
36	1.345	1.324	1.328	1.345	1.345	1.369	0.861	1.404
39	1.296	1.281	1.269	1.304	1.338	1.365	0.867	1.391
42	1.29	1.271	1.26	1.286	1.353	1.359	0.866	1.388
45	1.023	1.191	1.212	1.158	1.32	1.33	0.846	1.297

| 48 | 0.877 | 1.098 | 1.192 | 1.018 | 1.315 | 1.314 | 0.847 | 1.06 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Time (hours)	Media Control			
$\mathbf{0}$	0.064	0.064	0.064	0.064
$\mathbf{3}$	0.063	0.063	0.063	0.063
$\mathbf{6}$	0.064	0.064	0.064	0.064
$\mathbf{9}$	0.066	0.066	0.066	0.066
$\mathbf{1 2}$	0.066	0.066	0.066	0.066
$\mathbf{1 5}$	0.068	0.068	0.068	0.068
$\mathbf{1 8}$	0.068	0.068	0.068	0.068
$\mathbf{2 1}$	0.068	0.068	0.068	0.068
$\mathbf{2 4}$	0.068	0.068	0.068	0.068
$\mathbf{2 7}$	0.068	0.068	0.068	0.068
$\mathbf{3 0}$	0.068	0.068	0.068	0.068
$\mathbf{3 3}$	0.068	0.068	0.068	0.068
$\mathbf{3 6}$	0.068	0.068	0.068	0.068
$\mathbf{3 9}$	0.067	0.067	0.067	0.067
$\mathbf{4 2}$	0.068	0.068	0.068	0.068
$\mathbf{4 5}$	0.068	0.068	0.068	0.068
$\mathbf{4 8}$	0.068	0.068	0.068	0.068

S2.2. Raw MS analysis of interacting proteins (trypsin digested and subjected to MALDI) identified in pulldown assays

Protein band 1, Table 3

Probability Based Mowse Score

Ions score is $-10^{*} \log (\mathrm{P})$, where P is the probability that the observed match is a random event.
Protein scores greater than 51 are significant ($p<0.05$).

Concise Protein Summary Report

Switch to full Protein Summary Report
To create a bookmark for this report, right click this link: Concise Summary Report (./data/20210609/F024413.dat).

Re-Search All Search Unmatched

1. MSMEG 1368 Mass: 147106 Score: 425 Expect: 2.1e-039 Peptides matched: 56

DNA-directed RNA polymerase, beta' subunit (rpoC) [2.7.7.6] \{Mycobacterium smegmatis MC2 155\}
Sequence Coverage: 53\%
Matched peptides shown in Bold Red
1 MLDVNFFDEL RIGLATADOI RNWSYGEVKK PETINYRTLK PEKDGLFCEK 51 IFGPTRDNEC YCGKYKRVRF KGIICERCGV EVTRAKVRRE RMGHIELAAP 101 VTHIWYFKGV PSRLGYLLDL APKDLEKIIY FAAYVITSVD DEMRHNELST 151 LEAEMAVEKK AVEDQRDADL EARAQKLEAD LAELEAEGAK SDVRRKVRDS 201 GEREMRQLRD RAQRELDRLD EIWNTFTKLA PKQLIVDEVL YRELQDRYGE 251 YFTGAMGAES IKKLIENFDI DAEAESLREV IRSGKGQKKL RALKRLKVVA 301 AFQQSGNSPM GMVLDAVPVI PPELRPMVQL DGGRFATSDL NDLYRRVINR 351 NNRLKRLIDL GAPEIIVNNE KRMLQESVDA LFDNGRRGRP VTGPGNRPLK 401 SLSDLLKGKQ GRFRQNLLGK RVDYSGRSVI VVGPQLKLHQ CGLPKLMALE 451 LFKPFVMKRL VDLNHAQNIK SAKRMVERQR PQVWDVLEEV IAEHPVLLNR 501 APTLHRLGIQ AFEPQLVEGK AIQLHPLVCE AFNADFDGDQ MAVHLPLSAE 551 AQAEARILML SSNNILSPAS GKPLAMPRLD MVTGLYYLTT LVEGATGEYQ 601 AATKDAPEQG VYSSPAEAIM AMDRGALSVR AKIKVRLTEL RPPTDLEAQL 651 FENGWKPGDA WTAETTLGRV MFNELLPKSY PFVNEQYHKK VQARIINDLA 701 ERFPMIWAQ TVDKLKDAGF YWATRSGVTV SMADVLVPPQ KQEILERHEA 751 EADAIERKYQ RGALNHTERN ESLVKIWQDA TEEVGKALEE FYPADNPIIT 801 IVKSGATGNL TQTRTLAGMK GLVTNPKGEF IPRPIKSSFR EGLTVLEYFI 851 NTHGARKGLA DTALRTADSG YLTRRLVDVS QDVIVREHDC ETERGINVTL 901 AERGPDGTLI RDAHVETSAF ARTLATDAVD ANGNVIIERG HDLGDPAIDA 951 LLAAGITTVK VRSVLTCTSA TGVCAMCYGR SMATGKLVDI GEAVGIVAAQ 1001 SIGEPGTQLT MRTFHOGGVT GGADIVGGLP RVQELFEARV PRNKAPIADV 1051 AGRVRLEESD KFFKITIVPD DGGEEVVYDK LSKRORLRVI THEDGTEGVL 1101 SDGDHVEVGD QLMEGAADPH EVLRVQGPRE VQIHLVKEVQ EVYRAQQVSI 1151 HDKHIEVIVR QMLRRVTIID SGSTEFLPGS LTERAEFEAE NRRVVAEGGE 1201 PAAGRPVLMG ITKASLATDS WLSAASFQET TRVLTDAAIN CRSDKLNGLK 1251 ENVIIGKLIP AGTGISRYRN IQVQPTEEAR AAAYTIPSYE DQYYSPDFGQ 1301 ATGAAVPLDD YGYSDYR

Search Parameters

Type of search	: Peptide Mass Fingerprint
Enzyme	: Trypsin
Fixed modifications	: Carbamidomethyl (C)
Variable modifications	$:$ Oxidation (M)
Mass values	$:$ Monoisotopic
Protein Mass	$:$ Unrestricted
Peptide Mass Tolerance	$: \pm 0.5 \mathrm{Da}$
Peptide Charge State	$: 1+$
Max Missed Cleavages	$: 0$

Protein band 2, Table 3

Probability Based Mowse Score

Ions score is $-10^{*} \log (\mathrm{P})$, where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant ($\mathrm{p}<0.05$).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary Report (./data/20210609/F024415.dat).
Re-Search All Search Unmatched

1. MSMEG 6091 Mass: 93496 Score: 110 Expect: 6.7e-008 Peptides matched: 26 negative regulator of genetic competence ClpC-mecB \{Mycobacterium smegmatis MC2 155\}

Sequence Coverage: 36\%
Matched peptides shown in Bold Red
1 MFERFTDRAR RVVVLAQEEA RMLNHNYIGT EHILLGLIHE GEGVAAKSLE 51 SLGISLEGVR SQVEEIIGQG QQAPSGHIPF TPRAKKVLEL SLREALQLGH 101 NYIGTEHILL GLIREGEGVA AQVLVKLGAE LTRVRQQVIQ LLSGYQGKEA 151 AEAGTGGRGG ESGNPSTSLV LDQFGRNLTA AAMEGKLDPV IGREKEIERV 201 MQVLSRRTKN NPVLIGEPGV GKTAVVEGLA QAIVHGEVPE TLKDKQLYTL 251 DLGSLVAGSR YRGDFEERLK KVLKEINTRG DIILFIDELH TLVGAGAAEG 301 AIDAASILKP KLARGELQTI GATTLDEYRK YIEKDAALER RFQPVQVGEP 351 TVEHTIEILK GLRDRYEAHH RVSITDSAMV AAATLADRYI NDRFLPDKAI 401 DLIDEAGARM RIRRMTAPPD LREFDEKIAD ARREKESAID AQDFEKAAAL 451 RDKEKQLVAQ RAEREKQWRS GDLDVVAEVD DEQIAEVLGN WTGIPVFKLT 501 EEETTRLLRM EEELHKRIIG QEDAVKAVSK AIRRTRAGLK DPKRPSGSFI 551 FAGPSGVGKT ELSKALANFL FGDDDALIQI DMGEFHDRFT ASRLFGAPPG 601 YVGYEEGGQL TEKVRRKPFS VVLFDEIEKA HQEIYNSLLQ VLEDGRLTDG 651 QGRTVDFKNT VLIFTSNLGT SDISKAVGLG FSQGGSENNY ERMKQKVHDE 701 LKKHFRPEFL NRIDDIIVFH QLTQDEIIQM VDLMIGRVSN QLKTKDMALE 751 LSDKAKALLA KRGFDPVLGA RPLRRTIQRE IEDQLSEKIL FEEIGPGQLV 801 TVDVEGWDGE GQGEDAKFTF SGGPKRAETA EPDLAGAGAA GAPTAGTE

Search Parameters

Type of search	: Peptide Mass Fingerprint
Enzyme	: Trypsin
Fixed modifications	: Carbamidomethyl (C)
Variable modifications	$:$ Oxidation (M)
Mass values	: Monoisotopic
Protein Mass	$:$ Unrestricted
Peptide Mass Tolerance	$: \pm 0.5$ Da
Peptide Charge State	$: 1+$
Max Missed Cleavages	$: 1$

Protein band 3, Table 3

Probability Based Mowse Score

Ions score is $-10^{*} \log (\mathrm{P})$, where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant ($\mathrm{p}<0.05$).

Concise Protein Summary Report

Switch to full-Protein Summary_Report
To create a bookmark for this report, right click this link: Concise Summary Report (./data/20210609/F024435.dat).
Re-Search All Search Unmatched

1. MSMEG 0005
DNA gyrase, B subunit $(\operatorname{gyr} B)[5.99 .1 .3]$ \{Mycobacterium smegmatis MC2 155\}

Sequence Coverage: 23\%
Matched peptides shown in Bold Red
1 MAAQKNNAPK EYGADSITIL EGLEAVRKRP GMYIGSTGER GLHHLIWEVV 51 DNAVDEAMAG FATRVDVKIH ADGSVEVRDD GRGIPVEMHA TGMPTIDVVM 101 TQLHAGGKFD GETYAVSGGL HGVGVSVVNA LSTRLEATVL RDGYEWFQYY
151 DRSVPGKLKQ GGETKETGTT IRFWADPEIF ETTDYNFETV ARRLQEMAFL
201 NKGLTIELTD ERVTAEEVVD DWKDTAEAP KTADEKAAEA TGPSKVKHRV
251 FHYPGGLVDY VKHINRTKTP IQQSIIDFDG KGPGHEVEIA MQNiNAGYSES
301 VHTFANTINT HEGGTHEEGF RAALTSWVNR YAKDKKLLKD KDPNLTGDDI
351 REGLAAVISV KVAEPQFEGQ TKTKLGNTEV KSFVQKICNE QLQHWFEANP 401 AEAKTVVNKA VSSAQARIAA RKARELVRRK SATDIGGLPG KLADCRSTDP 451 SKSELYVVEG DSAGGSAKSG RDSMFQAILP LRGKIINVEK ARIDRVLKNT 501 EVQSIITALG TGIHDEFDIS KLRYHKIVLM ADADVDGQHI STLLLTLLFR 551 FMKPLVENGH IFLAQPPLYK LKWQRSEPEF AYSDRERDGL LEAGRAAGKK 601 INVDDGIQRY KGLGEMDAKE LWETTMDPSV RVLRQVTLDD AAAADELFSI 651 LMGEDVEARR SFITRNAKDV RFLDV

Search Parameters

Type of search	$:$ Peptide Mass Fingerprint
Enzyme	: Trypsin
Fixed modifications	: Carbamidomethyl (C)
Variable modifications	$:$ Oxidation (M)
Mass values	: Monoisotopic
Protein Mass	$:$ Unrestricted
Peptide Mass Tolerance $: \pm 0.4$ Da	
Peptide Charge State	$: 1+$
Max Missed Cleavages	$: 0$

Protein band 4, Table 3

Probability Based Mowse Score

Ions score is $-10^{*} \log (\mathrm{P})$, where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant ($\mathrm{p}<0.05$).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary_Report(/data/20210609/F024419.dat),
Re-Search All Search Unmatched

1. MSMEG 0880 Mass: 60472 Score: 125 Expect: 2.1e-009 Peptides matched: 15
chaperonin GroL (groL) \{Mycobacterium smegmatis MC2 155\}

Sequence Coverage: 42\%
Matched peptides shown in Bold Red
1 MRPGPHLREH TPSRPSRALH LTTERAIPNP EEHFAMAKTI AYDEEARRGL
51 ERGLNSLADA VKVTLGPKGR NWLEKKWGA PTITNDGVSI AKEIELEDPY
101 EKIGAELVKE VAKKTDDVAG DGTTTATVLA QALVREGLRN VAAGANPLGL.
151 KRGIEKAVEK VTETLLKSAK EVETKEQIAA TAGISAGDQS IGDLIAEAMD 201 KVGNEGVITV EESNTFGLQL ELTEGMRFDK GYISGYFVTD AERQEAVLED 251 PYILLVSSKV STVKDLLPLL EKVIQSGKPL LIIAEDVEGE ALSTLVVNKI 301 RGTFKSVAVK APGFGDRRKA MLQDMAILTG GQVISEEVGL SLETADVSLL 351 GKARKVVVTK DETTIVEGAG DAEAIQGRVA QIRAEIENSD SDYDREKLQE 401 RLAKLAGGVA VIKAGAATEV ELKERKHRIE DAVRNAKAAV EEGIVAGGGV 451 ALLQSAPSLE ELSLTGDEAT GANIVRVALS APLKQIALNG GLEPGVVAEK 501 VSNLPAGHGL NAATGEYEDL LAAGVADPVK VTRSALQNAA SIAALFLTTE 551 AVVADKPEKA AAPAGDPTGG MGGMDF

Search Parameters

Type of search	: Peptide Mass Fingerprint
Enzyme	: Trypsin
Fixed modifications	: Carbamidomethyl (C)
Variable modifications	: Oxidation (M)
Mass values	$:$ Monoisotopic
Protein Mass	$:$ Unrestricted
Peptide Mass Tolerance $: \pm 0.29$ Da	
Peptide Charge State	$: 1+$
Max Missed Cleavages	$: 0$

Protein band 5, Table 3

Probability Based Mowse Score

Ions score is $-10 * \log (\mathrm{P})$, where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant ($\mathrm{p}<0.05$).

Concise Protein Summary Report

Switch to full Protein Summary_Report

To create a bookmark for this report, right click this link: Concise Summary Report (./data/20210609/F024420.dat).
Re-Search All Search Unmatched

1. MSMEG 2430 Mass: 54788 Score: 56 Expect: 0.018 Peptides matched: 9 signal recognition particle protein (ffh) \{Mycobacterium smegmatis MC2 155\}

Sequence Coverage: 20\%
Matched peptides shown in Bold Red

> 1 MFESLSDRLT GALQGLRGKG RLTDADIDAT TREIRLALLE ADVSLPVVRA 51 $\mathbf{1 0 1}$ TVARIMLAGLQG GAEVSAALNP AQQVVKIVNE ELIGILGGET RQLAFAKTPP

Search Parameters

Type of search	: Peptide Mass Fingerprint
Enzyme	: Trypsin
Fixed modifications	: Carbamidomethyl (C)
Variable modifications	$:$ Oxidation (M)
Mass values	: Monoisotopic
Protein Mass	$:$ Unrestricted
Peptide Mass Tolerance	$: \pm 0.27$ Da
Peptide Charge State	$: 1+$
Max Missed Cleavages	$: 0$

Protein band 6, Table 3

Probability Based Mowse Score

Ions score is $-10^{*} \log (\mathrm{P})$, where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant ($\mathrm{p}<0.05$).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary_Report(/data/20210609/F024421.dat).

Re-Search All Search Unmatched

1. MSMEG 2389 Mass: 21217 Score: 53 Expect: 0.032 Peptides matched: 8

DNA-binding protein HU (hup) \{Mycobacterium smegmatis MC2 155\}

Sequence Coverage: 42\%
Matched peptides shown in Bold Red
1 MNKAELIDVL TTKMGTDRRQ ATAAVENVVD TIVRAVHKGD SVTITGFGVF
51 EQRRRAARVA RNPRTGETVK VKPTSVPAFR PGAQFKAVIS GAQKLPADGP
101 AVKRGVTAGP AKKAAKKAPA KKAAAKKTAT KAAAKKAPAK KAATKAPAKK
151 AATKAPAKKA ATKAPAKKAA TKAPAKKAAA KAPAKKAATK APAKKAAAKK
201 APAKKGRR

Search Parameters

Type of search	: Peptide Mass Fingerprint
Enzyme	Trypsin
Fixed modifications	: Carbamidomethyl (C)
Variable modifications	: Oxidation (M)
Mass values	: Monoisotopic
Protein Mass	: Unrestricted
Peptide Mass Tolerance	$: \pm 200$ ppm
Peptide Charge State	$: 1+$
Max Missed Cleavages	$: 1$

Protein band 7, Table 3

Probability Based Mowse Score

Ions score is $-10^{*} \log (\mathrm{P})$, where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant ($\mathrm{p}<0.05$).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary_Report(Nata/20210609/F024412.dat).
Re-Search All Search Unmatched

1. MSMEG_6092 Mass: 12446 Score: 61 Expect: 0.005 Peptides matched: 6 Lsr2 protein \{Mycobacterium smegmatis MC2 155\}

Sequence Coverage: 33\%
Matched peptides shown in Bold Red
1 MAKKVTVTLV DDFDGEATAD ETVEFGLDGV TYEIDLSAKN AAKLRNDLKQ
51 WVEAGRRVGG RKRGRAATTT TRGRGAIDRE QSAAIREWAR RNGHNVSTRG
101 RIPADVIDAF HAAT

Search Parameters

Type of search	: Peptide Mass Fingerprint
Enzyme	: Trypsin
Fixed modifications	: Carbamidomethyl (C)
Variable modifications	: Oxidation (M)
Mass values	: Monoisotopic
Protein Mass	: Unrestricted
Peptide Mass Tolerance	$: \pm 0.5$ Da
Peptide Charge State	$: 1+$
Max Missed Cleavages	$: 1$

Protein band 1, Table 4

Probability Based Mowse Score

Ions score is $-10^{*} \log (\mathrm{P})$, where P is the probability that the observed match is a random event. Individual ions scores >17 indicate identity or extensive homology ($\mathrm{p}<0.05$).
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

Switch to Protein Summary Report

To create a bookmark for this report, right click this link: Peptide Summary_Report(d/data/20210608/F024380.dat).

| Select All Select None Search Selected Error tolerant Archive Report |
| :--- | :--- | :--- |

1. MSMEG_3808 Mass: 109775 Score: 459 Peptides matched: 49
excinuclease ABC, A subunit (uvrA) \{Mycobacterium smegmatis MC2 155\}

Sequence Coverage: 44\%
Matched peptides shown in Bold Red
1 MGMNCVMRGT EHVRTACLDP RRPGRKPLAD RLVVKGAREH NLRGVDLDLP 51 RDALIVFTGL SGSGKSSLAF DTIFAEGQRR WESLSAYAR QFLGQMDKPD 101 VDFIEGLSPA VSIDQKSTNR NPRSTVGTIT EVYDYLRLLY ARAGTPHCPV 151 CGERIARQTP QQIVDQVLAM DEGLRFQVLA PVVRTRKGEF VDLFEKLNSQ 201 GYSRVRVDGV VYPLTDPPKL KKQEKHDIEV WDRLTVKAS AKQRLTDSIE 251 TALNLADGIV VLEFVDREDD HPHREQRFSE KLACPNGHPL AVDDLEPRSF 301 SFNSPYGACP ECTGLGIRKE VDPDLVVPDP ELTLAEGAVA PWSVGQSAEY 351 FTRMLAGLGE EMGFDVNTPW KKLPAKARRA ILEGCDHQVH VRYKNRYGRT 401 RSYYADFEGV MAFLQRRMEQ TDSEQMKERY EGFMRDIPCP ECNGTRLKPE 451 ILAVTLSAGD FGAKSIAQVA ELSIADCADF LNSLTLGPRE QAIAGQVLKE 501 IQSRLGFLLD VGLDYLSLSR AAATLSGGEA QRIRLATQIG SGLVGVLYVL 551 DEPSIGLHQR DNRRLIDTLV RLRDLGNTLI WEHDLDTIA HADWVVDIGP 601 AAGEHGGQIV HSGTYDDLLR NPESLTGAYL SGKESIEVPA IRRPVDKKRQ 651 ITWGGRENN LKEIDVAFPL GVLTSVTGVS GSGKSTMVND ILATVLANKL 701 NGARLVPGRH TRVNGLDQLD KLVRVDQSPI GRTPRSNPAT YTGVFDKIRS 751 LFAATTEAKV RGYQPGRFSF NVKGGRCEAC SGDGTIKIEM NFLPDVYVPC 801 EVCHGARYNR ETLEVHYKGK TISEVLDMSI EEATEFFEPI SSIHRYLKTL 851 VDVGLGWRL GQPAPTLSGG EAQRVKLAAE LQKRSTGRTI YILDEPTTGL 901 HFEDIRKLLK VINGLVDKGN TVIVIEHNLD VIKTSDWIID MGPEGGAGGG 951 TVVAQGTPED VAANPDSYTG KFLAELLDVP TPKRKRRKVS A

Search Parameters

Type of search	$:$ MS/MS Ion Search
Enzyme	: Trypsin
Fixed modifications	: Carbamidomethyl (C)
Variable modifications	: Oxidation (M)
Mass values	$:$ Monoisotopic
Protein Mass	$:$ Unrestricted
Peptide Mass Tolerance $: \pm 0.01 \%$	
Fragment Mass Tolerance: $\pm 0.5 \mathrm{Da}$	
Max Missed Cleavages	0

Protein band 1, Table 4

Probability Based Mowse Score

Ions score is $-10^{*} \log (\mathrm{P})$, where P is the probability that the observed match is a random event. Individual ions scores >18 indicate identity or extensive homology ($\mathrm{p}<0.05$).
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

Switch to Protein Summary Report

To create a bookmark for this report, right click this link: Peptide Summary Report(/data/20210608/F024376.dat).
Select All Select None Search Selected Error tolerant Archive Report

1. MSMEG 1439 Mass: 30396 Score: 786 Peptides matched: 64
ribosomal protein L2 (rplB) \{Mycobacterium smegmatis MC2 155\}

Sequence Coverage: 76\%
Matched peptides shown in Bold Red
1 MGIRKYKPTT PGRRGASVSD FAEITRSTPE KSLVRPLHGK GGRNAHGRIT 51 TRHKGGGHKR AYRVIDFRRH DKDGVNAKVA HIEYDPNRTA NIALLHYLDG 101 EKRYIIAPQG LKQGDVIESG ANADIKPGNN LPLRNIPAGT VIHAVELRPG 151 GGAKLARSAG VSIQLLGKEG TYAALRMPSG EIRRVDVRCR ATVGEVGNAE 201 QSNINWGKAG RMRWKGKRPT VRGVVMNPVD HPHGGGEGKT SGGRHPVSPW 251 GKPEGRTRKP NKPSDKLIVR RRRTGKKR

Search Parameters

Type of search	$:$ MS/MS Ion Search
Enzyme	$:$ Trypsin
Fixed modifications	$:$ Carbamidomethyl (C)
Variable modifications	$:$ Oxidation (M)
Mass values	$:$ Monoisotopic
Protein Mass	$:$ Unrestricted
Peptide Mass Tolerance $: \pm 0.01 \%$	
Fragment Mass Tolerance: $\pm 0.5 \mathrm{Da}$	
Max Missed Cleavages $:$	0

Supplementary References:

[1] U. Ray, S. Sharma, I. Kapoor, S. Kumari, V. Gopalakrishnan, S.V. Vartak, N. Kumari, U. Varshney, S.C. Raghavan, G4 DNA present at human telomeric DNA contributes toward reduced sensitivity to gammaradiation induced oxidative damage, but not bulky adduct formation, Int J Radiat Biol, 97 (2021) 11661180.
[2] T. Srinath, S.K. Bharti, U. Varshney, Substrate specificities and functional characterization of a thermo-tolerant uracil DNA glycosylase (UdgB) from Mycobacterium tuberculosis, DNA Repair (Amst), 6 (2007) 1517-1528.
[3] A. China, V. Nagaraja, Purification of RNA polymerase from mycobacteria for optimized promoterpolymerase interactions, Protein Expr Purif, 69 (2010) 235-242.
[4] R.S. Thakur, A. Desingu, S. Basavaraju, S. Subramanya, D.N. Rao, G. Nagaraju, Mycobacterium tuberculosis DinG is a structure-specific helicase that unwinds G4 DNA: implications for targeting G4 DNA as a novel therapeutic approach, J Biol Chem, 289 (2014) 25112-25136.

Figure S1
(A)
(B)

Fig. S1: Verification of $\mathbf{u v r B}$ deletion in M. smegmatis $\boldsymbol{u d g} \boldsymbol{B}^{-}$strain. (A) Schematic showing MSMEG_3816 (uvrB) and $\Delta u v r B:: k a n$ loci with the binding sites of screening primers (shown with small horizontal arrows). (B) Representative agarose gel showing the amplification of $u v r B$ locus, using the flanking primers, from the control ($u d g B^{-}$, parent) and knockout strains, where the wild type and $u v r B:: k a n$ alleles resulted in 801 bp and 1594 bp long amplicons, respectively.

Figure S2
(A)

(B)

$\begin{gathered} \text { UV } \\ 300 \mathrm{~J} / \mathrm{m}^{2} \end{gathered}$	+	+	+	+	+	+	+	+	-		$\stackrel{\square}{\text { ¢ }}$	-	-	-	-	-	-	-
MsmUvrABC protein(s)	-	A	B	C	AB	BC	AC	ABC	-		${ }^{\text {N }}$	A	B	C	AB	BC	AC	ABC

(C)

UV $300 \mathrm{~J} / \mathrm{m}^{2}$	+	+	+
$M s m \mathrm{UvrABC}$	-	+	+
ATP	-	-	+

Nicked plasmid

Supercoiled plasmid

Fig. S2: Purification and activity analysis of $\boldsymbol{M s m U v r A B C}$ proteins. (A) SDS-PAGE showing the purity and migration profile of UvrA, UvrB, UvrC and UdgB. (B) Analysis of the UV-irradiated supercoiled pUC18 (irradiated with $300 \mathrm{~J} / \mathrm{m}^{2} \mathrm{UV}$ light) or unirradiated upon their treatments with UvrABC proteins (either one at a time or two at a time or all three proteins together). Resolution of reaction mixtures on 1% agarose gel displays the migration profile of irradiated supercoiled plasmid and its conversion into nicked circular plasmid after treatment with UvrABC complex. (C) Controls for panel (B) examining UvrABC activity in the absence and presence of ATP on the UV-irradiated supercoiled pUC18.

Fig. S3: Purification profile of $\boldsymbol{M s m U d g B}$ _FLAG. Representative SDS-PAGE showing the purification (from gel filtration column) and migration profile of UdgB_FLAG protein containing C-terminal FLAG-tag.

Figure S4

(D) $\quad 5^{* *}{ }^{*}$ Substrate 5

Streptavidin oligomer complex

5' biotinylated oligomer

Fig. S4: Purification of MsmMfd and MsmUvrD2 proteins, and activity analysis of UvrD2. (A), (B) and (C) SDS-PAGE demonstrating the purification profiles (from Ni-NTA column) and mobility pattern of Mfd, Mfd_1040 and UvrD2, respectively. (D) Streptavidin displacement assay. Native PAGE depicting the migration of $5,{ }^{32} \mathrm{P}$-labelled and biotinylated substrate 5 (lane 1) and streptavidin complex with the substrate (lane 2). Increasing amounts of the single strand DNA translocase activity of UvrD2 result in streptavidin displacement, migration of substrate at its original position and formation of UvrD2 complex with ssDNA (lanes 3-6). The asterisk denotes 5, ${ }^{32} \mathrm{P}$-end labelling of the substrate.

Figure S5

Fig. S5: Impact of Msm translocases on UdgB AP-DNA complex. (A) Schematic of the turnover assay showing a possible increase in the UdgB reaction product due to the possible translocase action of Mfd (Note: increased product will be seen only if Mfd dislodged UdgB from its complex with AP-DNA). (B) UdgB turnover assays in the presence of either Mfd (full length) or Mfd_1040 (176 amino acids deleted from C-terminal). ${ }^{32} \mathrm{P}$-labelled substrate 2 was treated with the limiting amount of UdgB followed by incubation with the translocase (Mfd or Mfd_1040). Reaction mixtures from turnover assays were analysed on denaturing PAGE, where the empty black and filled black arrowheads denote ${ }^{32} \mathrm{P}$-labelled substrate 2 and UDG reaction product, respectively. The asterisk indicates $5{ }^{3}{ }^{32} \mathrm{P}$-end labelling of the substrate.

Figure S6
*Substrate 5

१ : Biotin tag

* : ${ }^{32} \mathrm{P}$ - end labeling

Fig. S6: Activity analysis of $\mathbf{M s m U v r D 2}$ and $\boldsymbol{M s m U v r B}$. Streptavidin displacement assay. Native PAGE showing the migration of 5 , ${ }^{32} \mathrm{P}$-labelled and biotinylated substrate 5 (lane 1) and streptavidin complex with the substrate (lane 2). Single strand DNA translocase activity of UvrD2 (lanes 3 and 4) or UvrB (lanes 5-7) results in streptavidin displacement, migration of substrate at its original position. The asterisk denotes 5 , ${ }^{32} \mathrm{P}$-end labelling of the substrate.

