1	Role of the nucleotide excision repair pathway proteins (UvrB and UvrD2) in recycling
2	UdgB, a base excision repair enzyme in Mycobacterium smegmatis
3	
4	Running title: UvrB and UvrD2 facilitate turnover of AP-site bound UdgB
5	
6	Indu Kapoor ^a , Abhirup Shaw ^a , Arindam Naha ^a , Elhassan Ali Fathi Emam ^a and Umesh
7	Varshney ^{a, b, *}
8	
9	^a Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012,
10	India
11	^b Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
12	
13	* <i>Correspondence to</i> : Umesh Varshney,
14	Phone: +918022932686, Fax: +918023602697,
15	E-mail: varshney@iisc.ac.in, <u>uvarshney@gmail.com</u>
16	
17	Keywords: UdgB, UvrD2, UvrB, Nucleotide excision repair, Transcription Coupled Repair,

18 mycobacteria

19 S1. Supplementary Methods

S1.1. Generation of constructs: pJAM2 and its derivatives, pJAM FLAG and pJAMH His, 20 were used to overexpress and purify proteins. To derive pJAM FLAG, a DNA sequence 21 encoding FLAG-tag followed by a stop codon was introduced at XbaI restriction site, using 22 oligomers UVL1 and UVL2. The plasmid pJAM FLAG retains a single XbaI restriction site 23 24 before the FLAG-tag and His6-tag present after FLAG-tag is not translated. A hygromycin resistant version of pJAM2 plasmid, pJAMH His, was made by deleting Kan^R cassette using 25 NdeI restriction site. The vector fragment was end-filled by Klenow DNA polymerase, purified 26 by phenol-chloroform extraction, and ligated with Hyg^R cassette excised from pMV261^{hyg} using 27 HpaI and DraI restriction sites. 28

The PCR carried out in 20 μ l volume contained 250 ng genomic DNA of *Msm* mc²155 strain, 0.5 units of Q5 DNA polymerase (NEB), 1X Q5 reaction buffer, 1X GC enhancer, 250 μ M dNTPs, and 10 pmol each of the forward and reverse primers. Reaction conditions included an initial denaturation at 98°C for 2 min, followed by 30 cycles of 98 °C for 40 s, 50 – 60 °C for 35 s and 72 °C for 1 - 3 min and a final extension at 72 °C for 5 min.

For cloning in one or more plasmids, pJAM2, pJAM FLAG and pJAMH His, ORFs 34 (MSMEG 5031 (Msm udgB), MSMEG 5423 (Msm mfd), MSMEG 5534 (Msm uvrD1), 35 MSMEG 1952 (Msm uvrD2), and MSMEG 2758 (Msm mysA)) from Msm mc²155 were PCR 36 amplified using the respective primers with flanking BamHI or XbaI cloning sites (Table S1). 37 38 Purified PCR products were ligated with the vector DNAs using BamHI and/or XbaI restriction sites, to obtain C-terminally His6-tagged or FLAG-tagged proteins. In parallel, pJAM2 harboring 39 a C-terminally truncated variant of Msm mfd, encoding the first 1040 amino acids was also 40 41 generated using Msm mfd BamHI Fp and Msm mfd 1040 XbaI Rp primers.

To generate pMV261h_*udgB*, *Msm_udgB* encoding ORF, *MSMEG_5031*, was PCR amplified using the phosphorylated primers *Msm_udgB_PFp* (binds 187 bp upstream of ORF) and *Msm_udgB_*Rp (binds 123 bp downstream of ORF). PCR amplicon (1200 bp) was ligated into PvuII digested pMV261hyg vector.

	46	Table S1. List of]	DNA oligomers u	used in the study to	generate constructs and	verify strains
--	----	---------------------	-----------------	----------------------	-------------------------	----------------

DNA oligomer	Sequence (5' to 3'), restriction site is underlined
Msm_udgB_PFp	GACACCGGTACCGGCGATCAGTG
Msm_udgB_Rp	CAGAAGCTTTGGTATCCGAGCCG
<i>Msm_udgB_</i> BamHI_Fp	CTGGTG <u>GGATCC</u> ATGGGACCGATTTTC
Msm_udgB_XbaI_Rp	CGGTCA <u>TCTAGA</u> TTGCCCGTCACG
Msm_uvrD1_BamHI_Fp	TAC <u>GGATCC</u> ATGACTTCCCCC
Msm_uvrD1_XbaI_Rp	GGAG <u>TCTAGA</u> GAGCTTCTGCAG
<i>Msm_uvrD2_</i> BamHI_Fp	CGGTGT <u>GGATCC</u> TTGTCGGGCGGT
Msm_uvrD2_XbaI_Rp	GCAGCA <u>TCTAGA</u> CGAATCGTGGCGGTT
Msm_mfd_BamHI_Fp	ATCCA <u>GGATCC</u> ATGACCGCACCG
Msm_mfd_XbaI_Rp	GCACCT <u>TCTAGA</u> TCGCTTCGCCTC
Msm_mfd_1040_XbaI_Rp	GGACT <u>TCTAGA</u> CGGTGTGGCAAC
Msm_mysA_XbaI_Fp	AGGC <u>TCTAGA</u> GTGGCAGCGACAAAG
Msm_mysA_XbaI_Rp	CATT <u>TCTAGA</u> CTAGTCCAGGTAGTCGCG
UVL1	CTAGAGACTACAAGGACGACGACGACAAGTGAG
UVL2	CTAGCTCACTTGTCGTCGTCGTCGTCCTTGTAGTCT
<i>MsuvrB</i> -Fp	CGCACCGGCAAACCCTTCG
	(binds 117 bps inside the ORF)
<i>MsuvrB</i> -Rp	CGCGAATTCAGTCACGACGAC
	(binds 50 bps downstream the ORF)

47

S1.2. Generation of Msm uvrB⁻ udgB⁻ strain: The plasmid, pPR-Ms uvrB-kan^R, was 48 electroporated in *Msm udgB*⁻ for allelic exchange and the transformants were selected on LBT 49 agar in the presence of Kan, Hyg and Gm at 30 °C. The transformants were inoculated in 2 ml of 50 LBT Kan Hyg and incubated at 30 °C for 2 days. Bacterial cultures were serially diluted till 10⁻², 51 and aliquots of 50 µl from each serial dilution were plated on LBT agar supplemented with Kan, 52 Hyg and 10% sucrose. Following incubation at 39 °C for 3 days, isolated colonies obtained on 53 the plate were patched on LBT agar containing either Kan, Hyg and 10% sucrose or Hyg and 54 Gm. Colonies that grew only on LBT agar plates containing Kan, Hyg and 10% sucrose were 55 further verified by PCR using ORF primers, *MsuvrB*-Fp and *MsuvrB*-Rp. 56

57 S1.3. Overexpression and purification of proteins

58 S1.3.1. *Msm*UvrA, *Msm*UvrB and *Msm*UvrC: N-terminally His6-tagged NER proteins were
59 overexpressed and purified from *Msm* [1].

S1.3.2. MsmUdgB FLAG and MsmUdgB His6: C-terminally FLAG-tagged UdgB (used for in 60 vitro pulldown assays) was purified from Msm mc²155 strain harboring the pJAM udgB FLAG 61 plasmid. A single colony from the transformation plate was inoculated in 2 ml LBT Kan and 62 grown at 37 °C, 180 rpm for 2 days. LBT Kan (50 ml) was inoculated with 1% of saturated 63 culture and incubated at 37 °C, 180 rpm for 12-14 h. Inoculation of 3 l LBT Kan was done with 64 1% primary culture and incubated at 37 °C, 160 rpm till OD₆₀₀ reached 0.6. Protein was 65 expressed using 0.5% acetamide for 4 h. The cell pellet was washed and resuspended in ice-cold 66 67 25 ml lysis buffer (50 mM Na₃PO₄ pH 7, 50 mM NaCl, 10% glycerol, and 2 mM βmercaptoethanol). The following steps were performed at 4 °C. The cells were lysed by 68 sonication and the lysate was subjected to centrifugation at 24K rpm, 4 °C for 1 h. The soluble 69 70 cell-free extract (CFE) was loaded on heparin column (GE Healthcare), washed with 5 column

volumes of lysis buffer containing 200 mM NaCl and the protein was eluted with a gradient (0% 71 to 100%) of NaCl in elution buffer [50 mM Na₃PO₄ pH 7, 1 M NaCl, 10 % glycerol (v/v) and 2 72 mM β-mercaptoethanol) at a flow rate of 1 ml/min for 30 min. The fractions eluted with 500 mM 73 to 800 mM NaCl were enriched for the desired protein. The protein containing fractions were 74 pooled and dialyzed to gradually obtain 50 mM NaCl concentration. The dialyzed fraction was 75 76 loaded on Mono-S (GE Healthcare), washed with 3 column volumes of lysis buffer and the protein was eluted with a gradient of NaCl as explained above. Near homogenous protein 77 fractions were pooled, dialyzed against buffer (50 mM Na₃PO₄ pH 7, 150 mM NaCl, 50% 78 79 glycerol, 2 mM β -mercaptoethanol), quantified and stored at -20 °C.

Similarly, C-terminally His₆-tagged UdgB (used for *in vitro* enzymatic reactions) was purified
from *Msm ung*- strain harboring the pJAMH_*udgB*_His plasmid. Protein was overexpressed as
described above and purified as discussed before [2].

S1.3.3. Translocases: *Msm*Mfd, *Msm*Mfd_1040 and *Msm*UvrD2 were purified using the
construct pJAM_*mfd* or pJAM_*mfd*_1040 or pJAM_*uvrD2*_His, respectively in *Msm* mc²155.
Proteins were expressed using 0.5% acetamide followed by 6-8 h incubation at 37 °C and 180
rpm. Like UvrA, all three proteins were expressed in the soluble fraction and C-terminally His6tagged proteins were purified by affinity chromatography (Ni-NTA) followed by size-exclusion
chromatography.

```
89 S1.3.4. MsmRNAP: RNAP was purified from Msm mc<sup>2</sup>155/ pJAM_mysA strain by
90 overexpressing the sigma factor, SigA (\sigma^A), to enrich the RNAP holoenzyme with \sigma^A factor [3].
```

91

92	Table S2. List of DNA	oligomers used	for biochemical	assays
----	-----------------------	----------------	-----------------	--------

DNA	Sequence (5' to 3'), complementary	
Oligomer	sequence is underlined	Description
GU9	C <u>TCAAGTGUAGGCATGC</u> TTTT <u>GC</u> <u>ATGCCTGCACTTGA</u>	37 nt long, makes a stem (16 bp)loop (4 nt) structure and containsG:U at 9th position in stem
GU26	GACTACGTACTGTCACGCTCAAG TGUAGGCATGCATCAGGCCAGA TCTGCTTTTTAGCAGATCTGGCC TGATGCATGCCTGCACTTGAGCG TGACAGTACGTAGTC	106 nt long, makes a stem (51 bp) loop (4 nt) structure and contains G:U at 26 th position in stem
UVL3	CTACTACGTACTGTCAGGGGTCC ATUTTCACCGGAATCAGGCCAG ATCTGCTAGTCTAGAGGATGCTA AGGTC	73 nt long ssDNA containing uracil at 25 th position
UVL4	GCAGATCTGGCCTGATTCCGGTG AAGATGGACCCCTGACAGTACG TAGTAG	51 nt long and complementary to UVL3
5' Biotinylated SSU9	C(B)TCAAGTG U AGGCATGCAAG AGCT	24 nt long ssDNA harboring uracil at 9 th position and biotin modification at 5' end
UVL9	AGCTCTTGCATGCCTGCACTTGA GTAGTCTAGAGGATGC	39 nt long and complementary to biotinylated SSU9
5' Biotinylated oligomer	GAC(B)GCTGCCGAATTCTGGCTT GCTAAAGGATAGTCGAATTTTCT CATTTT	51 nt long ssDNA with biotin modification at 5' end [4]

S2. Supplementary Results

S2.1. Raw data for growth curves

Time (hours)	M	<i>lsm</i> WT/p	MV261h (l	J)	Msm V	VT /pMV26	51h (2.5 mN	I H ₂ O ₂)
0	0.106	0.103	0.102	0.105	0.11	0.114	0.107	0.108
3	0.148	0.157	0.156	0.161	0.166	0.176	0.156	0.16
6	0.148	0.153	0.147	0.152	0.135	0.143	0.132	0.132
9	0.197	0.201	0.199	0.206	0.152	0.169	0.161	0.161
12	1.533*	0.302	0.287	0.29	0.196	0.224	0.199	0.203
15	0.432	0.474	0.456	0.458	0.299	0.347	0.317	0.315
18	0.645	0.717	0.691	0.686	0.463	0.542	0.485	0.495
21	0.863	0.915	0.896	0.89	0.665	0.778	0.766	0.759
24	1.047	1.099	1.083	1.083	0.882	0.979	0.964	0.956
27	1.184	1.237	1.216	1.232	1.078	1.163	1.144	1.157
30	1.263	1.302	1.287	1.304	1.241	1.28	1.268	1.293
33	1.312	1.34	1.313	1.323	1.318	1.336	1.342	1.363
36	1.317	1.35	1.321	1.346	1.349	1.353	1.36	1.379
39	1.327	1.359	1.317	1.342	1.369	1.374	1.372	1.397
42	1.32	1.339	1.318	1.333	1.377	1.372	1.382	1.411
45	1.336	1.345	1.317	1.33	1.359	1.361	1.369	1.387
48	1.321	1.339	1.312	1.328	1.363	1.364	1.364	1.38

NOTE: Values starred (*) and highlighted in blue color were excluded while plotting the growth curves.

Time (hours)	Msm	ı WT /pMV	/261h_ <i>udgE</i>	B (U)	Msm WT	/pMV261h_	_udgB (2.5	mM H ₂ O ₂)
0	0.106	0.101	0.105	0.104	0.112	0.103*	0.11	0.114
3	0.162	0.153	0.167	0.162	0.166	0.143*	0.157	0.162
6	0.149	0.126	0.139	0.137	0.138	0.095*	0.121	0.125
9	0.195	0.154	0.174	0.171	0.168	0.094*	0.138	0.143
12	0.243	0.19	0.208	0.209	0.207	0.088*	0.162	0.165
15	0.335	0.272	0.27	0.283	0.281	0.094*	0.202	0.214
18	0.484	0.415	0.37	0.409	0.393	0.086*	0.254	0.273
21	0.691	0.648	0.522	0.58	0.584	0.092*	0.341	0.406
24	0.884	0.864	0.768	0.823	0.798	0.091*	0.495	0.612
27	1.012	1.025	0.939	0.979	1.001	0.090*	0.787	0.861
30	1.104	1.139	1.053	1.098	1.152	0.086*	0.964	1.031
33	1.166	1.197	1.159	1.188	1.25	0.094*	1.125	1.169
36	1.191	1.22	1.193	1.225	1.292	0.088*	1.235	1.256
39	1.206	1.228	1.211	1.238	1.317	0.089*	1.297	1.315
42	1.201	1.229	1.207	1.246	1.329	0.092*	1.33	1.33
45	1.201	1.226	1.217	1.234	1.327	0.083*	1.326	1.332
48	1.211	1.226	1.223	1.237	1.34	0.088*	1.333	1.347

Time (hours)	М	sm uvrB ⁻ /j	oMV261h (U)	Msm $uvrB^{-}/pMV261h$ (2.5 mM H ₂ O ₂)			
0	0.106	0.109	0.111	0.111	0.112	0.11	0.11	0.115
3	0.162	0.156	0.169	0.175	0.165	0.169	0.169	0.171
6	0.14	0.143	0.149	0.154	0.133	0.137	0.129	0.143
9	0.184	0.18	0.185	0.185	0.158	0.163	0.146	0.168

12	0.245	0.234	0.256	0.245	0.19	0.195	0.169	0.195
15	0.38	0.351	0.404	0.382	0.258	0.262	0.222	0.279
18	0.581	0.528	0.612	0.573	0.359	0.361	0.292	0.363
21	0.751	0.712	0.769	0.735	0.546	0.54	0.427	0.555
24	0.894	0.833	0.909	0.844	0.732	0.741	0.625	0.703
27	1	0.969	1.022	0.963	0.849	0.9	0.766	0.834
30	1.089	1.067	1.09	1.067	0.998	1.047	0.91	0.98
33	1.13	1.112	1.137	1.122	1.125	1.149	1.054	1.09
36	1.152	1.142	1.159	1.143	1.167	1.181	1.115	1.125
39	1.149	1.141	1.148	1.127	1.199	1.219	1.149	1.141
42	1.14	1.135	1.136	1.127	1.206	1.224	1.159	1.159
45	1.123	1.121	1.112	1.089	1.196	1.217	1.154	1.149
48	1.106	1.123	1.107	1.068	1.19	1.2	1.16	1.157

Time (hours)	Msm	uvrB ⁻ /pM	V261h_udg	<i>B</i> (U)	Msm uvrB	/pMV261h	_udgB (2.	5 mM H ₂ O ₂
0	0.109	0.107	0.109	0.105	0.107	0.109	0.109	0.106
3	0.158	0.168	0.179	0.167	0.158	0.156	0.16	0.159
6	0.143	0.144	0.153	0.136	0.11	0.122	0.135	0.11
9	0.151	0.154	0.168	0.147	0.116	0.13	0.149	0.830*
12	0.177	0.178	0.198	0.175	0.117	0.134	0.176	0.121
15	0.234	0.236	0.267	0.229	0.141	0.166	0.205	0.133
18	0.331	0.327	0.36	0.316	0.141	0.167	0.239	0.132
21	0.472	0.464	0.481	0.463	0.169	0.208	0.306	0.147
24	0.633	0.644	0.647	0.653	0.176	0.273	0.457	0.167
27	0.749	0.754	0.716	0.723	0.218	0.386	0.619	0.161
30	0.847	0.859	0.834	0.816	0.284	0.544	0.689	0.188
33	0.961	0.988	0.945	0.901	0.451	0.681	0.803	0.263
36	1.055	1.062	1.033	1.005	0.602	0.768	0.898	0.341
39	1.058	1.067	1.05	1.011	0.67	0.851	0.967	0.487
42	1.064	1.078	1.055	1.026	0.756	0.955	0.994	0.588
45	1.068	1.058	1.045	0.997	0.794	0.983	1.011	0.651
48	1.064	1.074	1.039	1.003	0.861	0.982	1.003	0.735

Time (hours)		Msm uvrl	B ⁻ udgB ⁻		Msm i	uvrB ⁻ udgB	- (2.5 mM l	H ₂ O ₂)
0	0.114	0.114	0.118	0.118	0.113	0.115	0.115	0.114
3	0.19	0.192	0.193	0.196	0.17	0.187	0.181	0.181
6	0.182	0.182	0.181	0.182	0.163	0.167	0.162	0.151
9	0.262	0.249	0.249	0.264	0.218	0.22	0.216	0.212
12	0.435	0.368	0.365	0.429	0.301	0.297	0.3	0.303
15	0.737	0.636	0.597	0.731	0.505	0.484	0.476	0.512
18	0.927	0.874	0.848	0.936	0.789	0.741	0.737	0.801
21	1.135	1.06	1.063	1.152	0.986	0.949	0.894	1.006
24	1.274	1.232	1.216	1.282	1.151	1.143	0.929	1.199
27	1.336	1.302	1.291	1.336	1.268	1.277	0.87	1.325
30	1.355	1.316	1.307	1.353	1.31	1.324	0.862	1.368
33	1.347	1.32	1.308	1.346	1.34	1.36	0.865	1.395
36	1.345	1.324	1.328	1.345	1.345	1.369	0.861	1.404
39	1.296	1.281	1.269	1.304	1.338	1.365	0.867	1.391
42	1.29	1.271	1.26	1.286	1.353	1.359	0.866	1.388
45	1.023	1.191	1.212	1.158	1.32	1.33	0.846	1.297

48	0.877	1.098	1.192	1.018	1.315	1.314	0.847	1.06
Time (hours)		Media (Control					
0	0.064	0.064	0.064	0.064				
3	0.063	0.063	0.063	0.063				
6	0.064	0.064	0.064	0.064				

6	0.064	0.064	0.064	0.064
9	0.066	0.066	0.066	0.066
12	0.066	0.066	0.066	0.066
15	0.068	0.068	0.068	0.068
18	0.068	0.068	0.068	0.068
21	0.068	0.068	0.068	0.068
24	0.068	0.068	0.068	0.068
27	0.068	0.068	0.068	0.068
30	0.068	0.068	0.068	0.068
33	0.068	0.068	0.068	0.068
36	0.068	0.068	0.068	0.068
39	0.067	0.067	0.067	0.067
42	0.068	0.068	0.068	0.068
45	0.068	0.068	0.068	0.068
48	0.068	0.068	0.068	0.068

S2.2. Raw MS analysis of interacting proteins (trypsin digested and subjected to MALDI) identified in pulldown assays

Protein band 1, Table 3

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant (p<0.05).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary Report (../data/20210609/F024413.dat)

	Re-Search All	Search Ur	nmatched						
1.	MSMEG 1368	м	ass: 14710	6 Score	425	Expect: 2.1e	-039 Peptides	matched: 56	
	DNA-direct	ed RNA poi	lymerase,	beta' subu	unit (rpo	() [2.7.7.6]	{Mycobacterium	smegmatis MC2 1	155}

Sequence Coverage: 53%

Matched peptides shown in Bold Red

```
1 MLDVNFFDEL RIGLATADDI RNWSYGEVKK PETINYRTLK PEKDGLFCEK
 51 IFGPTRDWEC YCGKYKRVRF KGIICERCGV EVTRAKVRRE RMGHIELAAP
101 VTHIWYFKGV PSRLGYLLDL APKDLEKIIY FAAYVITSVD DEMRHNELST
 151 LEAEMAVEKK AVEDQRDADL EARAQKLEAD LAELEAEGAK SDVRRKVRDS
 201 GEREMRQLRD RAQRELDRLD EIWNTFTKLA PKQLIVDEVL YRELQDRYGE
251 YFTGAMGAES IKKLIENFDI DAEAESLREV IRSGKGQKKL RALKRLKVVA
 301 AFQQSGNSPM GMVLDAVPVI PPELRPMVQL DGGRFATSDL NDLYRVINR
 351 NNRLKRLIDL GAPEIIVNNE KRMLQESVDA LFDNGRRGRP VTGPGNRPLK
401 SLSDLLKGKQ GRFRQNLLGK RVDYSGRSVI VVGPQLKLHQ CGLPKLMALE
 451 LFKPFVMKRL VDLNHAQNIK SAKRMVERQR PQVWDVLEEV
                                                                  TAEHPVLLNE
 501 APTLHRLGIQ AFEPQLVEGK AIQLHPLVCE AFNADFDGDQ MAVHLPLSAE
 551 AQAEARILMI SSNNILSPAS GKPLAMPRLD MVTGLYVLTT LVEGATGEVQ
601 AATKDAPEQG VYSSPAEAIM AMDRGALSVR AKIKVRLTEL RPPTDLEAQL
 651 FENGWKPGDA WTAETTLGRV MENELLPKSY PEVNEQMHKK VQARIINDLA
 701 ERFPMIVVAQ TVDKLKDAGF YWATRSGVTV SMADVLVPPQ
                                                                  KQEILERHEA
 751 EADAIERKYO RGALNHTERN ESLVKIWODA TEEVGKALEE FYPADNPIIT
801 IVKSGATGNL TOTRTLAGMK GLVTNPKGEF IPRPIKSSFR EGLTVLEYFI
 851 NTHGARKGLA DTALRTADSG YLTRRLVDVS QDVIVREHDC ETERGINVTL
 901 AERGPDGTLI RDAHVETSAF ARTLATDAVD ANGNVIIERG HDLGDPAIDA
 951 LLAAGITTVK VRSVLTCTSA TGVCAMCYGR SMATGKLVDI GEAVGIVAAQ
1001 SIGEPGTQLT MRTFHQGGVT GGADIVGGLP RVQELFEARV PRNKAPIADV
1051 AGRVRLEESD KFFKITIVPD DGGEEVVYDK LSKRORLRVI THEDGTEGVL
1101 SDGDHVEVGD QLMEGAADPH EVLRVQGPRE VQIHLVKEVQ EVYRAQGVSI
1151 HDKHIEVIVR OMLRRVTIID SGSTEFLPGS LTERAEFEAE NRRVVAEGGE
1201 PAAGRPVLMG ITKASLATDS WLSAASFQET TRVLTDAAIN CRSDKLNGLK
1251 ENVIIGKLIP AGTGISRYRN IQVQPTEEAR AAAYTIPSYE DQYYSPDFGQ
1301 ATGAAVPLDD YGYSDYR
```

Type of search	:	Peptide Mass Fingerprint
Enzyme	:	Trypsin
Fixed modifications	:	Carbamidomethyl (C)
Variable modifications	:	Oxidation (M)
Mass values	:	Monoisotopic
Protein Mass	:	Unrestricted
Peptide Mass Tolerance	:	± 0.5 Da
Peptide Charge State	:	1+
Max Missed Cleavages	:	0

Protein band 2, Table 3

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant (p<0.05).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary Report (.../data/20210609/F024415.dat)

Re-Search All Search Unmatched

 <u>MSMEG 6091</u> Mass: 93496 Score: 110 Expect: 6.7e-008 Peptides matched: 26 negative regulator of genetic competence ClpC-mecB {Mycobacterium smegmatis MC2 155}

Sequence Coverage: 36%

Matched peptides shown in Bold Red

1	MFERFTDRAR	RVVVLAQEEA	RMLNHNYIGT	EHILLGLIHE	GEGVAAKSLE
51	SLGISLEGVR	SQVEEIIGQG	QQAPSGHIPF	TPRAKKVLEL	SLREALQLGH
101	NYIGTEHILL	GLIREGEGVA	AQVLVK LGAE	LTRVRQQVIQ	LLSGYQGKEA
151	AEAGTGGRGG	ESGNPSTSLV	LDQFGRNLTA	AAMEGKLDPV	IGREKEIERV
201	MQVLSRRTKN	NPVLIGEPGV	GKTAVVEGLA	QAIVHGEVPE	TLKDKQLYTL
251	DLGSLVAGSR	YRGDFEERLK	KVLKEINTRG	DIILFIDELH	TLVGAGAAEG
301	AIDAASILKP	KLARGELQTI	GATTLDEYRK	YIEKDAALER	RFQPVQVGEP
351	TVEHTIEILK	GLRDRYEAHH	RVSITDSAMV	AAATLADRYI	NDRFLPDKAI
401	DLIDEAGARM	RIRRMTAPPD	LREFDEKIAD	ARREKESAID	AQDFEKAAAL
451	RDKEKQLVAQ	RAEREKQWRS	GDLDVVAEVD	DEQIAEVLGN	WTGIPVFKLT
501	EEETTRLLRM	EEELHKRIIG	QEDAVKAVSK	AIRRTRAGLK	DPK RP SG SF I
551	FAGPSGVGKT	ELSKALANFL	FGDDDALIQI	DMGEFHDRFT	ASRLFGAPPG
601	YVGYEEGGQL	TEKVRRKPFS	VVLFDEIEKA	HQEIYNSLLQ	VL EDGRL TDG
651	QGRTVDFKNT	VLIFTSNLGT	SDISKAVGLG	F SQGGS ENNY	ERMKQKVHDE
701	LKKHFRPEFL	NRIDDIIVFH	QLTQDEIIQM	VDLMIGRVSN	QLKTKDMALE
751	LSDKAKALLA	KRGFDPVLGA	RPLRRTIQRE	IEDQLSEKIL	FEEIGPGQLV
801	TVDVEGWDGE	GQGEDAKFTF	SGGPK RAE TA	EPDLAGAGAA	GAPTAGTE

Type of search	:	Peptide Mass Fingerprint
Enzyme	:	Trypsin
Fixed modifications	:	Carbamidomethyl (C)
Variable modifications	:	Oxidation (M)
Mass values	:	Monoisotopic
Protein Mass	:	Unrestricted
Peptide Mass Tolerance	:	± 0.5 Da
Peptide Charge State	:	1+
Max Missed Cleavages	:	1

Protein band 3, Table 3

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant (p<0.05).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary Report (.../data/20210609/F024435.dat)

Re-Search All Search Unmatched

1.	MSMEG 0005	Mass: 74580	Score:	58	Expect:	0.011	Peptide	s matched:	11
	DNA gyrase,	B subunit (gyrB)	[5.99.1.3]	{Myo	cobacterium	smegmat	is MC2	155}	

Sequence Coverage: 23%

Matched peptides shown in Bold Red

1	MAAQKNNAPK	EYGADSITIL	EGLEAVRKRP	GMYIGSTGER	GLHHLIWEVV
51	DNAVDEAMAG	FATRVDVKIH	ADGSVEVRDD	GRGIPVEMHA	TGMPTIDVVM
101	TQLHAGGKFD	GETYAVSGGL	HGVGVSVVNA	LSTR LEATVL	RDGYEWFQYY
151	DRSVPGKLKQ	GGETKETGTT	IRFWADPEIF	ETTDYNFETV	ARRLQEMAFL
201	NKGLTIELTD	ERVTAEEVVD	DWKDTAEAP	KTADEKAAEA	TGPSKVKHRV
251	FHYPGGLVDY	VKHINRTKTP	IQQSIIDFDG	KGPGHEVEIA	MQWNAGYSES
301	VHTFANTINT	HEGGTHEEGF	RAALTSWNR	YAKDK KL LKD	KDPNLTGDDI
351	REGLAAVISV	KVAEPQFEGQ	TKTKLGNTEV	KSFVQKICNE	QLQHWFEANP
401	AEAKTVVNKA	VSSAQARIAA	RKARELVRRK	SATDIGGLPG	KLADCRSTDP
451	SKSELYVVEG	DSAGGSAKSG	RDSMFQAILP	LRGKIINVEK	ARIDRVLKNT
501	EVQSIITALG	TGIHDEFDIS	KLRYHKIVLM	ADADVDGQHI	STLLLTLLFR
551	FMKPLVENGH	IFLAQPPLYK	LKWQRSEPEF	AYSDRERDGL	LEAGRAAGKK
601	INVDDGIQRY	KGLGEMDAKE	LWETTMDPSV	RVLRQVTLDD	AAAADELFSI
651	LMGEDVEARR	SFITRNAKDV	RFLDV		

Type of search	:	Peptide Mass Fingerprint
Enzyme	:	Trypsin
Fixed modifications	:	Carbamidomethyl (C)
Variable modifications	:	Oxidation (M)
Mass values	:	Monoisotopic
Protein Mass	:	Unrestricted
Peptide Mass Tolerance	:	± 0.4 Da
Peptide Charge State	:	1+
Max Missed Cleavages	:	0

Protein band 4, Table 3

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant (p<0.05).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary Report (.../data/20210609/F024419.dat),

 Re-Search All
 Search Unmatched

 1.
 MSMEG 0880
 Mass: 60472
 Score: 125
 Expect: 2.1e-009
 Peptides matched: 15

 chaperonin GroL (groL) {Mycobacterium smegmatis MC2 155}

Sequence Coverage: 42%

Matche	d peptides s	shown in <mark>Bo</mark> l	ld Red		
1	MRPGPHLREH	TPSRPSRALH	LTTERAIPNP	EEHFAMAKTI	AYDEEARRGL
51	ERGLNSLADA	VKVTLGPKGR	NVVLEKKWGA	PTITNDGVSI	AKEIELEDPY
101	EKIGAELVKE	VAKKTDDVAG	DGTTTATVLA	QALVREGLRN	VAAGANPLGL
151	K RGIEKAVEK	VTETLLKSAK	EVETKEQIAA	TAGISAGDQS	IGDLIAEAMD
201	KVGNEGVITV	EESNTFGLQL	ELTEGMRFDK	GYISGYFVTD	AERQEAVLED
251	PYILLVSSKV	STVKDLLPLL	EKVIQSGKPL	LIIAEDVEGE	ALSTLVVNKI
301	RGTFKSVAVK	APGFGDRRKA	MLQDMAILTG	GQVISEEVGL	SLETADVSLL
351	GKARKVVVTK	DETTIVEGAG	DAEAIQGRVA	QIRAEIENSD	SDYDREKLQE
401	RLAKLAGGVA	VIKAGAATEV	ELKERKHRIE	DAVRNAKAAV	EEGIVAGGGV
451	ALLQSAPSLE	ELSLTGDEAT	GANIVRVALS	APLKQIALNG	GLEPGVVAEK
501	VSNLPAGHGL	NAATGEYEDL	LAAGVADPVK	VTRSALQNAA	SIAALFLTTE
551	AVVADKPEKA	AAPAGDPTGG	MGGMDF		

Type of search	:	Peptide Mass Fingerprint
Enzyme	:	Trypsin
Fixed modifications	:	Carbamidomethyl (C)
Variable modifications	:	Oxidation (M)
Mass values	:	Monoisotopic
Protein Mass	:	Unrestricted
Peptide Mass Tolerance	:	± 0.29 Da
Peptide Charge State	:	1+
Max Missed Cleavages	:	0

Protein band 5, Table 3

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant (p<0.05).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary Report (.../data/20210609/F024420.dat).

Re-Search All Search Unmatched

1. <u>MSMEG 2430</u> Mass: 54788 Score: 56 Expect: 0.018 Peptides matched: 9 signal recognition particle protein (ffh) {Mycobacterium smegmatis MC2 155}

Sequence Coverage: 20%

Matched peptides shown in Bold Red

1	MFESLSDRLT	GALQGLRGKG	RLTDADIDAT	TREIRLALLE	ADVSLPWRA
51	FVARIKERAK	GAEVSAALNP	AQQVVK IVNE	ELIGILGGET	RQLAFAKTPP
101	TVIMLAGLQG	AGKTTLAGKL	AKWLKDKGHS	PLLVACDLQR	PGAVNQLQIV
151	GERAGVAVFA	PHPGTAPGAH	ETEGAGPGDP	VAVAAAGLAE	AKTKLYGVVI
201	VDTAGRLGID	DVLMAQAAGI	RDAVQPDETL	FVLDAMIGQD	AVATAEAFRE
251	GVGFTGWLT	KLDGDARGGA	ALSVREVTGV	PILFASAGEK	LEDFDVFHPD
301	RMASRILGMG	DVLTLIEQAE	QVFDAQKAEE	AAAKIGTGEL	TLEDFLEQML
351	TIRKMGPIGN	LLGMLPGAGQ	MKDALAAVDD	KQLDRVQAII	RGMTPQERAD
401	PKIINASRRL	RIANGSGVTV	SEVNQLVDRF	FEARKMMS SM	AGQMGMGFGR
451	KSATRKAAKS	KGKKGKNAKK	GKGPTQPKVR	NPLGAAGLPG	GFPDLSNMPK
501	GLDELPPGLA	DEDLSKLKEP	NK		

Type of search	:	Peptide Mass Fingerprint
Enzyme	:	Trypsin
Fixed modifications	:	Carbamidomethyl (C)
Variable modifications	:	Oxidation (M)
Mass values	:	Monoisotopic
Protein Mass	:	Unrestricted
Peptide Mass Tolerance	:	± 0.27 Da
Peptide Charge State	:	1+
Max Missed Cleavages	:	0

Protein band 6, Table 3

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant (p<0.05).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary Report (.../data/20210609/F024421.dat)

Re-Search All Search Unmatched

1.	MSMEG 2389	Mass:	21217	Score: 53	Expect	0.032	Peptides	matched:	8
	DNA-binding	protein HU	(hup)	{Mycobacterium	smegmatis	MC2 159	5}		

Sequence Coverage: 42%

Matched peptides shown in Bold Red

1 MNKAELIDVL TTKMGTDRRQ ATAAVENVVD TIVRAVHKGD SVTITGFGVF 51 EQRRAARVA RNPRTGETVK VKPTSVPAFR PGAQFKAVIS GAQKLPADGP 101 AVKRGVTAGP AKKAAKKAPA KKAAAKKTAT KAAAKKAPAK KAATKAPAKK 151 AATKAPAKKA ATKAPAKKAA TKAPAKKAAA KAPAKKAAAK APAKKAAAK 201 APAKKGRR

Type of search	: Peptide Mass Fingerprint
Enzyme	: Trypsin
Fixed modifications	: Carbamidomethyl (C)
Variable modifications	: Oxidation (M)
Mass values	: Monoisotopic
Protein Mass	: Unrestricted
Peptide Mass Tolerance	: ± 200 ppm
Peptide Charge State	: 1+
Max Missed Cleavages	: 1

Protein band 7, Table 3

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 51 are significant (p<0.05).

Concise Protein Summary Report

Switch to full Protein Summary Report

To create a bookmark for this report, right click this link: Concise Summary Report (.../data/20210609/F024412.dat),

Re-Search All Search Unmatched

Sequence Coverage: 33%

Matched peptides shown in Bold Red

1 MAKKVTVTLV DDFDGEATAD ETVEFGLDGV TYEIDLSAKN AAKLRNDLKQ 51 WVEAGRRVGG RKRGRAATTT TRGRGAIDRE QSAAIREWAR RNGHNVSTRG 101 RIPADVIDAF HAAT

Type of search	:	Peptide Mass Fingerprint
Enzyme	:	Trypsin
Fixed modifications	:	Carbamidomethyl (C)
Variable modifications	:	Oxidation (M)
Mass values	:	Monoisotopic
Protein Mass	:	Unrestricted
Peptide Mass Tolerance	:	± 0.5 Da
Peptide Charge State	:	1+
Max Missed Cleavages	:	1

Protein band 1, Table 4

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 17 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

Switch to Protein Summary Report

To create a bookmark for this report, right click this link: Peptide Summary Report (../data/20210608/F024380.dat).

Selec	ct All Select None	Search Selected	Error tolerant	Archive Report
1.	MSMEG 3808	Mass: 109775 Sc	ore: 459 Pentides	matched: 49
	excinuclease ABC,	A subunit (uvrA)	{Mycobacterium smegma	tis MC2 155}

Sequence Coverage: 44%

Matched peptides shown in Bold Red

1	MGMNCVMRGT	EHVRTACLDP	RRPGRKPLAD	RLVVKGAREH	NLRGVDLDLP
51	RDALIVFTGL	SGSGKSSLAF	DTIFAEGQRR	YVESLSAYAR	QFLGQMDKPD
101	VDFIEGLSPA	VSIDQKSTNR	NPRSTVGTIT	EVYDYLRLLY	ARAGTPHCPV
151	CGERIARQTP	QQIVDQVLAM	DEGLRFQVLA	PVVRTRKGEF	VDLFEKLNSQ
201	GYSR VRVDGV	VYPLTDPPKL	KKQEKHDIEV	WDR LTVKAS	AKQRLTDSIE
251	TALNLADGIV	VLEFVDREDD	HPHREQRESE	KLACPNGHPL	AVDDLEPRSF
301	SFNSPYGACP	ECTGLGIRKE	VDPDLVVPDP	ELTLAEGAVA	PWSVGQSAEY
351	FTRMLAGLGE	EMGFDVNTPW	KKLPAKARRA	ILEGCDHQVH	VRYKNRYGRT
401	RSYYADFEGV	MAF LQRRMEQ	TDSEQMKERY	EGFMRDIPCP	ECNGTRLKPE
451	ILAVTLSAGD	FGAKSIAQVA	ELSIADCADF	LNSLTLGPRE	QAIAGQVLKE
501	IQSRLGFLLD	VGLDYLSLSR	AAATLSGGEA	QRIRLATQIG	SGLVGVLYVL
551	DEPSIGLHQR	DNRRLIDTLV	RLRDLGNTLI	WEHDLDTIA	HADWVVDIGP
601	AAGEHGGQIV	HSGTYDDLLR	NPESLTGAYL	SGKESIEVPA	IRRPVDKKRQ
651	ITWGARENN	LKEIDVAFPL	GVLTSVTGVS	GSGKSTMVND	ILATVLANKL
701	NGARLVPGRH	TRVNGLDQLD	KLVR VDQSPI	GRTPRSNPAT	YTGVFDKIRS
751	LFAATTEAKV	RGYQPGRFSF	NVKGGRCEAC	SGDGTIKIEM	NFLPDVYVPC
801	EVCHGARYNR	ETLEVHYKGK	TISEVLDMSI	EEATEFFEPI	SSIHRYLKTL
851	VDVGLGYVRL	GQPAPTLSGG	EAQRVKLAAE	LQKRSTGRTI	YILDEPTTGL
901	HFEDIRKLLK	VINGLVDKGN	TVIVIEHNLD	VIKTSDWIID	MGPEGGAGGG
951	TVVAQGTPED	VAANPDSYTG	KFLAELLDVP	TPKRKRRKVS	A

Type of search :	MS/MS Ion Search
Enzyme :	Trypsin
Fixed modifications :	Carbamidomethyl (C)
Variable modifications :	Oxidation (M)
Mass values :	Monoisotopic
Protein Mass :	Unrestricted
Peptide Mass Tolerance :	± 0.01 %
Fragment Mass Tolerance:	± 0.5 Da
Max Missed Cleavages :	0

Protein band 1, Table 4

Probability Based Mowse Score

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores > 18 indicate identity or extensive homology (p<0.05). Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Peptide Summary Report

Switch to Protein Summary Report

To create a bookmark for this report, right click this link: Peptide Summary Report (./data/20210608/F024376.dat)

Select All Search Selected Error tolerant Archive Report Select None Mass: 30396 Score: 786 Peptides matched: 64 1. MSMEG 1439 ribosomal protein L2 (rplB) {Mycobacterium smegmatis MC2 155}

Sequence Coverage: 76%

Matched peptides shown in Bold Red

1 MGIRKYKPTT PGRRGASVSD FAEITRSTPE KSLVRPLHGK GGRNAHGRIT

51 TRHKGGGHKR AYRVIDFRRH DKDGVNAKVA HIEYDPNRTA NIALLHYLDG

- 101 EKRYITAPQG LKQCDVIESG ANADIKPGNN LPLRNIPAG VIAVELRPG 151 GGAKLARSAG VSIQLLGKEG TYAALRMPSG EIRRVDVRCR ATVGEVGNAE 201 QSNINWGKAG RMRWKGKRPT VRGVVMNPVD HPHGGGEGKT SGGRHPVSPW
- 251 GKPEGRTRKP NKPSDKLIVR RRRTGKKR

```
Type of search
                       : MS/MS Ion Search
                       : Trypsin
Enzyme
Fixed modifications
                       : Carbamidomethyl (C)
Variable modifications : Oxidation (M)
Mass values
                         Monoisotopic
                       :
Protein Mass
                       : Unrestricted
Peptide Mass Tolerance : ± 0.01 %
Fragment Mass Tolerance: ± 0.5 Da
Max Missed Cleavages
                      : 0
```

Supplementary References:

[1] U. Ray, S. Sharma, I. Kapoor, S. Kumari, V. Gopalakrishnan, S.V. Vartak, N. Kumari, U. Varshney, S.C. Raghavan, G4 DNA present at human telomeric DNA contributes toward reduced sensitivity to gamma-radiation induced oxidative damage, but not bulky adduct formation, Int J Radiat Biol, 97 (2021) 1166-1180.

[2] T. Srinath, S.K. Bharti, U. Varshney, Substrate specificities and functional characterization of a thermo-tolerant uracil DNA glycosylase (UdgB) from Mycobacterium tuberculosis, DNA Repair (Amst), 6 (2007) 1517-1528.

[3] A. China, V. Nagaraja, Purification of RNA polymerase from mycobacteria for optimized promoterpolymerase interactions, Protein Expr Purif, 69 (2010) 235-242.

[4] R.S. Thakur, A. Desingu, S. Basavaraju, S. Subramanya, D.N. Rao, G. Nagaraju, Mycobacterium tuberculosis DinG is a structure-specific helicase that unwinds G4 DNA: implications for targeting G4 DNA as a novel therapeutic approach, J Biol Chem, 289 (2014) 25112-25136.

Fig. S1: Verification of *uvrB* deletion in *M. smegmatis udgB*⁻ strain. (A) Schematic showing *MSMEG_3816 (uvrB)* and $\Delta uvrB::kan$ loci with the binding sites of screening primers (shown with small horizontal arrows). (B) Representative agarose gel showing the amplification of *uvrB* locus, using the flanking primers, from the control (*udgB*⁻, parent) and knockout strains, where the wild type and *uvrB::kan* alleles resulted in 801 bp and 1594 bp long amplicons, respectively.

Figure S2

Fig. S2: Purification and activity analysis of *Msm***UvrABC proteins. (A)** SDS-PAGE showing the purity and migration profile of UvrA, UvrB, UvrC and UdgB. (B) Analysis of the UV-irradiated supercoiled pUC18 (irradiated with 300 J/m² UV light) or unirradiated upon their treatments with UvrABC proteins (either one at a time or two at a time or all three proteins together). Resolution of reaction mixtures on 1% agarose gel displays the migration profile of irradiated supercoiled plasmid and its conversion into nicked circular plasmid after treatment with UvrABC complex. (C) Controls for panel (B) examining UvrABC activity in the absence and presence of ATP on the UV-irradiated supercoiled pUC18.

Fig. S3: Purification profile of *Msm***UdgB_FLAG.** Representative SDS-PAGE showing the purification (from gel filtration column) and migration profile of UdgB_FLAG protein containing C-terminal FLAG-tag.

Fig. S4: Purification of *Msm***Mfd and** *Msm***UvrD2 proteins, and activity analysis of UvrD2.** (A), (B) and (C) SDS-PAGE demonstrating the purification profiles (from Ni-NTA column) and mobility pattern of Mfd, Mfd_1040 and UvrD2, respectively. (D) Streptavidin displacement assay. Native PAGE depicting the migration of 5' ³²P-labelled and biotinylated substrate 5 (lane 1) and streptavidin complex with the substrate (lane 2). Increasing amounts of the single strand DNA translocase activity of UvrD2 result in streptavidin displacement, migration of substrate at its original position and formation of UvrD2 complex with ssDNA (lanes 3-6). The asterisk denotes 5' ³²P-end labelling of the substrate.

Figure S5

Fig. S5: Impact of *Msm* **translocases on UdgB AP-DNA complex.** (A) Schematic of the turnover assay showing a possible increase in the UdgB reaction product due to the possible translocase action of Mfd (Note: increased product will be seen only if Mfd dislodged UdgB from its complex with AP-DNA). (B) UdgB turnover assays in the presence of either Mfd (full length) or Mfd_1040 (176 amino acids deleted from C-terminal). ³²P-labelled substrate 2 was treated with the limiting amount of UdgB followed by incubation with the translocase (Mfd or Mfd_1040). Reaction mixtures from turnover assays were analysed on denaturing PAGE, where the empty black and filled black arrowheads denote ³²P-labelled substrate 2 and UDG reaction product, respectively. The asterisk indicates 5' ³²P-end labelling of the substrate.

Fig. S6: Activity analysis of *Msm***UvrD2 and** *Msm***UvrB.** Streptavidin displacement assay. Native PAGE showing the migration of 5' ³²P-labelled and biotinylated substrate 5 (lane 1) and streptavidin complex with the substrate (lane 2). Single strand DNA translocase activity of UvrD2 (lanes 3 and 4) or UvrB (lanes 5-7) results in streptavidin displacement, migration of substrate at its original position. The asterisk denotes 5' ³²P-end labelling of the substrate.