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Multi-Disease Predictive Analytics (MDPA) models simultaneously predict the risks of multiple diseases in

patients and are valuable in early diagnoses. Patients tend to have multiple diseases simultaneously or de-

velop multiple complications over time, and MDPA models can learn and effectively utilize such correlations

between diseases. Data from large-scale Electronic Health Records (EHR) can be used through Multi-Label

Learning (MLL) methods to develop MDPA models. However, data-driven approaches for MDPA face the

challenge of data imbalance, because rare diseases tend to have much less data than common diseases. Insuf-

ficient data for rare diseases makes it difficult to leverage correlations with other diseases. These correlations

are studied and recorded in biomedical literature but are rarely utilized in predictive analytics. This article

presents a novel method called Knowledge-Aware Approach (KAA) that learns clinical correlations from the

rapidly growing body of clinical knowledge. KAA can be combined with any data-driven MLL model for

MDPA to refine the predictions of the model. Our extensive experiments, on real EHR data, show that the

use of KAA improves the predictive performance of commonly used MDPA models, particularly for rare dis-

eases. KAA is also found to be superior to existing general approaches of combining clinical knowledge with

data-driven models. Further, a counterfactual analysis shows the efficacy of KAA in improving physicians’

ability to prescribe preventive treatments.
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1 INTRODUCTION

The ability to identify high-risk individuals prior to the onset of diseases facilitates personalized
preventive care and reduces overall rates of morbidity and mortality. Compared with predicting
diseases individually, it is more useful and realistic to predict multiple diseases, because patients
tend to have multiple diseases simultaneously and patients with a single disease may develop
other complications over time. For example, patients with diabetes are likely to have stroke, heart
disease, and renal failure [8]. Rare diseases, which affect fewer than 200,000 patients in the U.S.,
are especially challenging to diagnose and lead to substantial clinical and economic burden [47].

Traditionally, physicians play the role of identifying potential diseases that patients may have,
based on patients’ health information and physicians’ experience and knowledge. However, this
process is challenging, because all physicians may not be equally knowledgeable or experienced to
identify all possible diseases [2]. Physicians are usually trained in a specialized narrow domain and
so, many potential diseases may be out of their scope of expertise, particularly rare diseases. Also,
biomedical knowledge is being produced at a rapid rate—more than 0.8M new articles are added
annually into the biomedical database MEDLINE [38]—and physicians, busy in their practice, may
not always have up-to-date knowledge. Hence, reliable automated decision support tools that can
aid physicians in accurate diagnoses is crucial. Diagnostic decision support systems, which use
predictive models for diagnoses, have helped physicians play this role since the 1970s [36].

The availability of large-scale Electronic Health Records (EHR) has spurred the development
of Machine Learning methods for a variety of clinical predictive tasks, including diagnosis predic-
tion [43, 51]. Multi-label and multi-task learning models have been developed for multi-disease

predictive analytics (MDPA), i.e., the simultaneous prediction of risks of multiple diseases. Such
models can learn correlations across multiple diseases, from historical EHR data, to improve over-
all prediction. However, there are considerably more patient samples for common diseases (e.g.,
diabetes) in EHR, for a predictive model to learn from, than for rare diseases (e.g., Hodgkin’s dis-
ease). Due to lack of sufficient samples, correlations between rare diseases and other diseases can
be very difficult to capture.

A common approach to address the problem of insufficient samples is to use auxiliary infor-
mation from Biomedical Knowledge Graphs (KG) to develop combined data-driven knowledge-
based models. Knowledge graphs are large, heterogeneous information networks with multiple
node types representing clinical concepts (e.g., diseases, drugs) and multiple edge types (e.g.,
“treats,” “predisposes”) representing associations between pairs of clinical concepts. These KGs
are being actively developed by a combination of manual curation and automatic text mining
from biomedical literature. Such combined data-driven knowledge-based models have been found
to improve the accuracy and interpretability of diagnosis prediction [12, 34, 52]. However, previ-
ous studies have two limitations. Most of the models have been designed to use only a relatively
small part of the knowledge graph containing hierarchical information, e.g., ICD disease classifi-
cation hierarchy [44]. KGs contain considerably more information on, for example, adverse drug
events, risk factors, and co-morbidities. Recognizing the need for modeling additional informa-
tion, some recent works, such as Reference [52], have utilized complete KGs for (single) diagnosis
prediction. But, they have specialized architectures that cannot be generalized easily for MDPA.
Further, to our knowledge, no previous study has evaluated the efficacy of combined data-driven
knowledge-based models for rare disease prediction.

In this article, we address these gaps through two contributions. First, we develop a general
approach, called Knowledge Aware Approach (KAA), of using information from knowledge
graphs in Multi-Label Learning (MLL) models. Unlike previous approaches where KGs are used
at training time, our approach uses them to refine the predictions from a trained MLL model. By
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Fig. 1. Portion of Knowledge Graph constructed from SemMedDB triples.

thus decoupling the use of KGs from model training, KAA offers a unique and highly flexible ap-
proach that can be used with any underlying data-driven MDPA model. Second, we extensively
evaluate the performance of several MLL models, with the use of KAA, for predicting multiple
common and rare diseases on a large real EHR dataset. In addition to experiments to compare
predictive accuracy, we also conduct a counterfactual analysis to evaluate the utility of predictive
models to augment the physician’s decision-making ability. Our experiments demonstrate the ef-
ficacy of KAA in improving the predictive accuracy of all the MLL models evaluated, particularly
for rare diseases. Our KAA model can be found in https://bitbucket.org/q_lin/kaa.git/src.

2 RESEARCH BACKGROUND

2.1 Literature-derived Knowledge Graphs

Biomedical literature is the primary source of clinical knowledge, obtained from research (e.g.,
clinical trials) as well as experience (e.g., case studies). This literature can be freely accessed from
databases such as PubMed, which contains more than 28M articles from MEDLINE [38]. There
are ongoing efforts to create standardized vocabularies and ontologies to encode this vast body
of biomedical literature. For instance, Metathesaurus from the Unified Medical Language System
created by the U.S. National Library of Medicine is the largest thesaurus in the biomedical domain
[1] that comprises over 1M biomedical concepts and 5M concept names. The Metathesaurus is
organized by concepts represented by Controlled Unique Identifier (CUI) for biomedical vo-
cabulary as well as relationships between the concepts such as “causes” or “co-exists with.”

Manual creation of ontologies for the enormous amount of biomedical literature is infeasible.
Thus, automated and scalable Natural Language Processing systems have been designed to encode
knowledge from the primary literature directly [20]. SemMedDB is one such system that extracts
“semantic predications” automatically from the titles and abstracts of all PubMed articles [28].
Each semantic prediction consists of a triple (subject, predicate, object). The subject and object
are clinical concepts from the Metathesaurus. The predicate indicates a relationship between the
subject and the object, such as “treats” or “causes.” These triples can be viewed as directed edges
and nodes in a knowledge graph, where each node corresponds to a subject or an object, labelled by
their CUI, and each directed edge corresponds to a predicate, labelled by the relationship. Figure 1
shows part of a KG from SemMedDB.

SemMedDB includes 30 types of relationships (listed in Appendix A). The corresponding KG is
dense, with about 94M predications (edges) [28]. Two clinical concepts may be connected by multi-
ple paths (sequence of one or more edges) representing various direct and indirect relationships. To
enable reasoning on such large, complex graphs and to automate feature engineering, knowledge
graph embeddings have been developed that yield state-of-the-art results in many graph mining
applications. These embeddings encode the global structural properties of the KG into vectorial
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representations of its vertices [26, 48]. In our experiments, we use one such method, TransE [4], to
obtain vectorial representations of clinical concepts from SemMedDB. We provide more details on
TransE in Appendix B. With such representations, similarity between diseases can be computed
algebraically using vectorial measures of similarity, e.g., cosine similarity. A high similarity be-
tween diseases indicates that they have similar properties in the graph, e.g., similar neighborhood,
that in turn would indicate shared clinical relations such as causes, treatments, or risk factors.

2.2 Multi-disease Predictive Analytics

Wide adoption of EHR in recent years has led to the development of many machine learning
models for diagnosis prediction using historical EHR data comprising clinical investigations, drug
prescriptions, previous diagnoses, and demographic information, e.g., References [11, 24, 31, 33].
Majority of the previous works on diagnosis prediction has focused on the prediction of specific
single diseases, e.g., References [3, 13, 14, 55]. Data-driven models for MDPA can be formulated
through multi-task learning (MTL) or multi-label learning (MLL). MTL views each patient
as an example with multiple tasks (one disease per task) and trains the multiple tasks jointly with
shared computational structure to improve learning, e.g., Reference [30]. MLL associates each pa-
tient with multiple labels (one label per disease). MLL is applicable for large label spaces while
MTL is not, which makes MLL more suitable for health risk modelling, since the number of pos-
sible diseases can be large. Furthermore, MTL assumes that every example (patient) is associated
with all tasks (diseases), while MLL allows each example (patient) to be associated with a subset of
labels (diseases) [54], making MLL a more general model. Hence, most previous works on MDPA
have used MLL models [39, 42, 49, 57].

There are numerous ways of building MLL models; a detailed review can be found in Reference
[54]. We highlight two categories of methods that are most common in diagnosis prediction and
later show how our proposed KAA method improves predictive accuracy in both cases. In the
first category a model is trained for each disease, e.g., Binary Relevance [5]. This is equivalent to
modeling each disease independently and we denote it by MDS (model diseases separately). In
the second category of MLL methods, which we call MDJ (model diseases jointly), the training
process is shared, i.e., the likelihood of each disease is learned jointly. Since all the disease labels
are used together in the training process, correlations between the diseases are learned well. In
both cases, all patient features are utilized during training and the final predictions are given for
all diseases simultaneously. See Figure 2.

Using Biomedical Knowledge in Predictive Models. Clinical knowledge is essential to select im-
portant features for use in predictive models. To obviate the need for such manual feature en-
gineering, which is cumbersome and time-consuming, most recent approaches have developed
“end-to-end” models with minimal or no feature selection. Biomedical knowledge has been uti-
lized in these models during training to improve the predictive accuracy and address the problem
of insufficient samples for less common diseases.

The work of Reference [10] was an early deep neural network–based framework that can utilize
knowledge-based priors to regularize parameters in their networks. They evaluated their model
using only the ICD hierarchy and did not test its predictive accuracy for MDPA. Subsequent work
developed more specialized neural architectures to effectively utilize the hierarchical structure of
disease ontologies to obtain clinical concept embeddings. For instance, GRAM uses an attention-
based mechanism that gives more weight to an ancestor of a clinical concept that has less frequency
in the data. This allows it to learn from related diseases guided by the parent-child relations in the
disease hierarchy [12]. In GRAM, the ICD hierarchy is only used while learning disease represen-
tations, while KAME [34] uses it additionally in generating hospital visit embeddings. Both these
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Fig. 2. Our KAA applied to MLL predictions.

works evaluate next-visit diagnoses prediction, but they do not specifically evaluate accuracy of
rare disease prediction. Further, both these models can use only hierarchical information from dis-
ease ontologies and not the entire KG. Recently, DG-RNN was proposed by Reference [52], which
uses KG embeddings to obtain attention weights for each clinical concept used for prediction. They
initialize the embeddings with TransE embeddings from the entire KG and then fine-tune the em-
beddings using neighbors (from the KG) of each clinical concept found in the data. For this crucial
step of neighborhood selection, only disease nodes and two kinds of edges that are most relevant
to heart failure prediction are used from the KG. Without such task-specific selection, each clinical
event will have a very large number of potentially less useful neighbors in the dense KG, leading
to difficulties in training and loss of interpretability. Further, their DG-RNN has been designed for
risk prediction of a single disease (heart failure) and not evaluated for MLL, which may require
additional model development, as discussed in Reference [31].

Among these approaches the most general approach, with respect to use of KGs, is that of Refer-
ence [10]. Their model can use auxiliary information of label similarity from any source, including
knowledge graph embeddings. We denote this method by MDJ-Regu and provide more details in
Appendix C. All the previous approaches are closely tied to the underlying data-driven model ar-
chitectures. MDJ-Regu can only be used with neural network based MDPA models. GRAM, KAME
and DG-RNN have even more specialized neural architectures, as described above.

Another general approach of using auxiliary knowledge in predictive models is to use pretrained
embeddings as features. This has been used in many applications, not just in MDPA. For example,
knowledge graph embeddings of drugs and diseases have been used to predict adverse drug events
[35]. Such an approach can be used with both MDS and MDJ, and we call them MDS-Embed and
MDJ-Embed, respectively, where the embeddings are obtained using TransE.

In contrast to all these models, where KGs are used during model training, our proposed KAA
is a general framework that uses KGs to refine the predictions from an MLL model. Hence, it can
be applied on the predictions obtained from any MLL model.

3 MODEL DEVELOPMENT

We now describe our KAA, which takes disease prediction probabilities from any MLL method as
input and refines them using a knowledge graph to produce new prediction probabilities.
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3.1 Notation and Problem Setting

Let N be the number of patients in the training data, K be the dimensionality of the feature set,
and J be the total number of labels. Each patient is associated with a K-dimensional feature vector
that encodes patients’ features, such as medications and laboratory investigation results, extracted
from historical EHR data. Each patient is diagnosed with a set of diseases and the J -dimensional
binary label vector encodes this information: 1 indicates presence of a disease and 0 indicates
absence. We denote the label for the j th disease by yj (1 ≤ j ≤ J ).

After an MLL method is trained on historical data of N patients, it can predict the probabilities of
the J labels given any K-dimensional feature vector x of a patient. In the MDS category, indepen-
dent classifiersдj (1 ≤ j ≤ J ) are learned separately, e.g., through Binary Relevance. After training,
дj can produce the probability Pj of the j th disease (i.e., the probability of label yj = 1). In the MDJ
category, a shared function C is learned, e.g., through a neural network. The final predictions are
obtained through δ j (C (x )) , where δ j is the function that takes the outcome of C (x ) and outputs
the prediction probability of the j th disease as well. In this manner, a jointly trained MLL model
can predict the probabilities Pj (for 1 ≤ j ≤ J ) for all the J diseases simultaneously. See Figure 2.

3.2 KAA: Leveraging Biomedical Literature during Multi-label Prediction

The key idea of KAA is that the predictions for two similar diseases can be fine-tuned based on their
similarity obtained from the knowledge graph to reduce the divergence between their predictions.
If two diseases are not similar, then we rely primarily on data-driven probabilities. KAA iteratively
applies this to all pairs of diseases. Similar iterative procedures have been used in other contexts,
e.g., Reference [17].

Let Sd,d
′ be the similarity between the knowledge graph embeddings of diseases d and d

′
.

To impose the condition that two diseases with high similarity tend to have similar occurrence
probabilities, we define the following loss function where the probabilities Pj : j ∈ J represent

purely data-driven predictions from any existing algorithm for MDPA and the probabilities P
′
j , P

′

k
:

j ∈ J ,k ∈ J represent our proposed knowledge-refined predictions.

f (P
′
j ) = (1 − ϵ )

J∑

j=1

J∑

k=1

S j,k (P
′
j − P

′

k )2 + ϵ

J∑

j=1

‖S j,∗‖1 (P
′
j − Pj )

2 (1)

Equation (1) consists of two terms. The first term captures the constraint on disease similarity. For

a pair of diseases, j and k , with large similarity value S j,k , minimizing f (P
′
j ) will lead to smaller dif-

ference between the knowledge-refined probabilities P
′
j and P

′

k
. However, a small similarity value

S j,k will not enforce such a constraint on the difference between the knowledge-refined probabil-
ities. The second term is used to ensure that knowledge-corrected probabilities do not deviate too
much from the data-driven predictions. This can be viewed as a form of regularization, as we do
not want this optimization to completely overrule the model learned during training. Hence, the

squared difference (P
′
j − Pj )

2 is minimized with a coefficient ‖S j,∗‖1 =
∑J

k=1
|S j,k | to ensure that

both terms have comparable coefficients. This coefficient prevents the loss function from attach-

ing more importance to the first term over summations involving P
′
j : j ∈ J when ‖S j,∗‖1 is large.

The tradeoff between the first and second terms in Equation (1) is controlled by a hyperparameter
ϵ ∈ (0, 1). To minimize Equation (1), we find its critical point:

∂( f (P
′
j ))

∂(P
′
j )
∝ (1 − ϵ )

J∑

j=1

J∑

k=1

S j,k (P
′
j − P

′

k ) + ϵ

J∑

j=1

‖S j,∗‖1 (P
′
j − Pj ). ∀j ∈ J (2)
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Setting the above to zero, we obtain the refined prediction for disease j, which consists of the

original prediction Pj and a “weighted-average” of optimal P
′

k
, (∀k ∈ J ):

P
′
j = (1 − ϵ )

∑J

k=1
S j,k , P

′

k

‖S j,∗‖1
+ ϵPj . (3)

We note that the second-order partial derivative, shown in Equation (4), is greater than zero for
positive similarity values ensuring that the critical point is a minimum.

∂2 ( f (P
′
j ))

∂2 (P
′
j )
= (1 − ϵ )

J∑

j=1

J∑

k=1

S j,k + ϵ

J∑

j=1

‖S j,∗‖1 =
J∑

j=1

J∑

k=1

S j,k (4)

We then obtain an iterative process that allows us to input a set of knowledge-refined predictions

to obtain another set of updated predictions, as shown in Equation (5). We initialize P
′ (t=0)
j (t is the

iteration index) with the data-driven predictions Pj (i.e., P
′ (0)
j = Pj ). We repeat this step for all J

diseases to obtain P
′ (t=1)
j , 1 ≤ j ≤ J and iteratively continue until convergence.

P
′ (t )
j = (1 − ϵ )

∑J

k=1
S j,k , P

′ (t−1)
k

‖S j,∗‖1
+ ϵPj (5)

Convergence is determined by no decrease in loss in successive iterations, which typically occurs
in 10–15 iterations in our experiments. The time complexity of obtaining the refined predictions
for all J labels, for each patient, is O (J 2T ) where T is the total number of iterations.

To calculate disease similarities, we use knowledge graph embeddings from TransE [4] in our
experiments. We provide a brief overview of TransE in Appendix B. TransE outputs k-dimensional
vector representations (where k is a hyperparameter, set to 200 in our experiments) of all the
clinical entities in the graph. Thus, we obtain a 200-dimensional vector representation for each

disease. The similarity between two disease vectorsd andd
′
is computed using the Gaussian kernel,

Sd,d
′ = exp(−γ ‖d − d ′ ‖)2, where exp denotes the exponential function and γ is a hyperparameter.

This similarity value is always positive, thereby ensuring a minima in Equation (4).
Figure 2 shows a schematic of how our KAA approach can be combined with MLL methods.

More details on the classifiers MDS and MDJ used in our experiments are in Appendix D. Appen-
dix E has a summary of all the steps in KAA described above, including how each step is applied
in our experiments.

4 EXPERIMENT SET UP

In this study, experiments are conducted using de-identified data from the MIMIC-III dataset [27],
a publicly available EHR dataset of 46,520 patients, collected from intensive care units of the Beth
Israel Deaconess Medical Center in Boston, USA, between 2001 to 2012. To evaluate our method
in not only common diseases but also rare diseases, we choose the 20 most common diseases and
the 10 rarest diseases from our EHR dataset. The occurrence distribution of the selected diseases
in our dataset is given in Table 1. The imbalance ratio (IR) that reflects the imbalance among
diseases (i.e., the rarity of diseases in this dataset) is computed as below [32], where |D+j | and |D−j |
are the number of positive and negative samples, respectively, for disease j.

IR j =
max ( |D+j |, |D−j |)
min( |D+j |, |D−j |)

Additional details of the selected diseases are in Appendix F.
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Table 1. Summary of Occurrences of the 30 Selected Diseases (Appendix F Has More Details)

Disease
No.

Short
Name

Number
(Percent) of
Occurrences

Imbalance
ratio

Disease
No.

Short
Name

Number
(Percent) of
Occurrences

Imbalance
ratio

1 SEP 6,925 (14.9%) 5.7 16 NSD 6,924 (14.9%) 5.7

2 ARF 9,549 (20.5%) 3.9 17 HVD 6,627 (14.2%) 6.0

3 CHF 10,432
(22.4%)

3.5 18 ED 6,374 (13.7%) 6.3

4 PNE 6,558 (14.1%) 6.1 19 HD* 128 (0.3%) 362.4

5 FED 12,731
(27.4%)

2.7 20 RF 9,884 (21.2%) 3.7

6 LD 4,156 (8.9%) 10.2 21 MM* 154 (0.3%) 301.1

7 HCSH 4,889 (10.5%) 8.5 22 CKD 5,039 (10.8%) 8.2

8 DA 9,540 (20.5%) 3.9 23 SLE* 311 (0.7%) 148.6

9 MD 4,405 (9.5%) 9.6 24 NECS* 513 (1.1%) 89.7

10 EH 17,924
(38.5%)

1.6 25 CIBD* 421 (0.9%) 109.5

11 CAH 13,115
(28.2%)

2.5 26 MOS* 406 (0.9%) 113.6

12 DWC 8,064 (17.3%) 4.8 27 MS* 222 (0.5%) 208.5

13 DLM 12,250
(26.3%)

2.8 28 CNS* 269 (0.6%) 171.9

14 DMC 3,414 (7.3%) 12.6 29 LYM* 214 (0.5%) 216.4

15 CD 13,705
(29.5%)

2.4 30 CRA* 185 (0.4%) 250.5

∗indicates rare disease.

Fig. 3. Our experiment design.

Similar to previous works on MDPA [12, 34], we use clinical data from previous admission
episodes to predict diagnoses in future episodes, since the granularity of timestamps for many
clinical investigations in MIMIC-III is more reliable at an episode-level than at a daily or hourly
level. Hence, patients with single episodes are excluded and we use data of 7,537 patients, who
have two or more episodes.

Figure 3 illustrates our experiment design. For each patient i (i = 1, . . . ,N ), we set the discharge
time of the first admission as t0i and use the features collected during the first admission episode
as predictors, all of which are the “visible” information for the time after the first admission. We
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Table 2. Disease Occurrences across Time Windows

Short Before During (cumulative)
Name toi Year=w1 Year=w2 Year=w3 Year=w4 Year=w5
SEP 1,014 1,120 1,418 1,599 1,724 1,825
ARF 1,625 1,371 1,760 2,006 2,187 2,327
CHF 2,175 1,631 2,048 2,337 2,529 2,657
PNE 1,115 969 1,236 1,391 1,513 1,599
FED 2,132 1,778 2,252 2,551 2,763 2,917
LD 782 606 766 864 932 982

HCSH 983 816 1,077 1,263 1,374 1,479
DA 1,720 1,433 1,824 2,068 2,228 2,354
MD 727 559 712 809 881 928
EH 3,025 1,832 2,274 2,546 2,781 2,916

CAH 2,310 1,407 1,800 2,058 2,253 2,384
DWC 1,466 1,026 1,300 1,462 1,579 1,652
DLM 1,861 1,258 1,612 1,811 1,998 2,110
DMC 817 543 699 805 886 939
CD 2,348 1,740 2,148 2,407 2,586 2,730

NSD 1,053 844 1,091 1,246 1,371 1,471
HVD 1,182 770 979 1,113 1,211 1,283
ED 1,031 801 1,041 1,194 1,309 1,390
HD 30 26 27 29 30 30
RF 1,585 1,378 1,727 1,937 2,071 2,184

MM 27 23 28 34 35 39
CKD 958 842 1,125 1,309 1,440 1,559
SLE 88 63 72 81 82 84

NECS 75 64 81 95 103 109
CIBD 94 73 93 101 104 111
MOS 74 56 76 80 82 85
MS 50 30 38 45 51 52

CNS 48 37 41 44 47 50
LYM 39 24 37 38 40 47
CRA 36 25 30 34 37 40

predict the status of y j
i (j = 1, . . . , J ), which is defined by whether patient i is diagnosed with the

j th disease from the label set of J = 30 diseases in the next w years after t0i . We vary w from one
to five years to examine if different time windows affect our predictive performance.

Table 2 shows the distribution of diseases for different time windows. The first column (“before
t0i ”) has the distribution of diseases in the first admission episode, t0i . The second column shows
the distribution of diseases that occur withinw = 1 year after t0i . Subsequent columns forw years
(w = 2, 3, 4, 5) after t0i shows the distribution of diseases in a cumulative manner.

A total of 5,062 features are extracted from patient demographics, lab tests, procedures,
medications, and known diseases. These features are from the hospital record system, which
contains measurements for the entire hospital stay, including those in non-ICU care, of these
patients [27]. Patient demographics, such as gender, race, marital status, and age are encoded
as binary variables (age is binarized into intervals of 10 years, (0 − 10, . . . , 70 − 80, and ≥ 80).
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Table 3. Summary of Features Used

Feature Category No. of Columns Examples

Demographics 76 Female, married, white

Lab tests 266 Hematocrit, Eosinophils

Procedures 1,181 ICD-9-CM procedure codes (e.g., 3727 for cardiac mapping)

Medications 3,271 “Warfarin, 5mg Tablet”

Diagnoses 268 ICD-9-CM diagnosis codes (e.g., 5,848 for acute kidney failure)

Each medication is encoded as a binary variable indicating whether or not that medication was
given. Each lab-test is numerically encoded as two variables (the number of times the test was
taken and the number of times the test result was abnormal). Each procedure is encoded as a
variable (the number of times the procedure was conducted). The disease diagnosis variables
that are known at t0i are also included as binary predictors. The features used are summarized in
Table 3.

We conduct two sets of experiments. In the first set, we compare the improvement in predictive
accuracy when KAA is used with multiple MLL models. The selected MLL models include:

(1) Neural network based models for MDS and MDJ (described in Section 2.2).
(2) Classifiers CC-J48 [40] and ML-KNN [53] that were reported to be the best-performing

MLL methods on this dataset [57].

The aim of the first experiment is to evaluate whether the use of KAA improves the predictive
performance of these MLL models. In addition, we also evaluate two other methods of incorporat-
ing general clinical knowledge in MDPA models:

(1) MDJ-Regu [10]: the closest previous approach that uses disease similarities as a regularizer
in training MDJ models.

(2) MDS-Embed and MDJ-Embed: Following the common approach of using pretrained em-
beddings as features, we use KG embeddings of diseases, diagnosed at the first admission
as additional inputs in MDS and MDJ.

Since neural networks may overfit such high-dimensional data, we use lasso regularization
for MDS and MDJ in all cases, i.e., both with and without knowledge infusion through KAA,
knowledge-based regularization (-Regu), and feature embeddings (-Embed). For a fair compari-
son, we have used exactly the same neural network structure in MDJ, MDJ-Regu, MDJ-Embed,
and MDJ-KAA. Similarly, the network structure of MDS, MDS-Embed, and MDS-KAA are iden-
tical. We also provide the same disease similarity values, obtained from TransE, to MDJ-Regu,
MDJ-Embed, and MDJ-KAA. In MDJ-Embed, multiple diseases, if present in the input diagnoses,
are represented by the element-wise sum of the individual disease embeddings. More details of
MDS and MDJ networks are in Appendix D.

All the methods are compared using 10-fold cross-validation (CV) to estimate the predictive
performance [22]. Since there are multiple labels, we use the micro-AUC, which computes the
Area Under the ROC Curve (AUC) by considering the predictions for all the labels together
and is preferred when there is class imbalance [50].

In the second set of experiments, we demonstrate the practical impact of KAA by counterfactu-
ally analyzing how healthcare predictive models can augment clinicians’ capability in identifying
high-risk patients and providing preventive treatments to reduce their risks.
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Table 4. Mean Micro-AUC, with Standard Deviations: Prediction of All Diseases across

5 Time Windows

Time Window w1 w2 w3 w4 w5

MDS 0.6263 ± 0.0094 0.6293 ± 0.0034 0.6408 ± 0.0062 0.6483 ± 0.0038 0.6496 ± 0.0054

MDS-Embed1 0.6259 ± 0.0016 0.6419 ± 0.0033∗∗ 0.6529 ± 0.0078∗∗ 0.6542 ± 0.0027∗∗ 0.6521 ± 0.0045

MDS-KAA1 0.6642 ± 0.0118∗∗ 0.6744 ± 0.0039∗∗ 0.6850 ± 0.0041∗∗ 0.6889 ± 0.0066∗∗ 0.6919 ± 0.0079∗∗

MDJ 0.6885 ± 0.0192 0.6930 ± 0.0099 0.7075 ± 0.0055 0.7157 ± 0.0116 0.7148 ± 0.0082

MDJ-Embed2 0.6763 ± 0.0139 0.6827 ± 0.0136 0.6951 ± 0.0089 0.6922 ± 0.0103 0.7051 ± 0.0087

MDJ-Regu2 0.6704 ± 0.0173 0.6947 ± 0.0099 0.7051 ± 0.0074 0.7175 ± 0.0090 0.7189 ± 0.0091

MDJ-KAA2 0.7142 ± 0.0138∗∗ 0.7261 ± 0.0094∗∗ 0.7295 ± 0.0100∗∗ 0.7274 ± 0.0099∗∗ 0.7348 ± 0.0063∗∗

CC-J48 0.7451 ± 0.0157 0.6333 ± 0.0061 0.6782 ± 0.0231 0.6944 ± 0.0048 0.7041 ± 0.0025

CC-J48-KAA3 0.7746 ± 0.0165∗∗ 0.6870 ± 0.0110∗∗ 0.7260 ± 0.0229∗∗ 0.7349 ± 0.0049∗∗ 0.7427 ± 0.0025∗∗

ML-KNN 0.7248 ± 0.0037 0.7286 ± 0.0021 0.7326 ± 0.0013 0.7365 ± 0.0016 0.7370 ± 0.0040

ML-KNN-KAA4 0.7244 ± 0.0040 0.7281 ± 0.0017 0.7320 ± 0.0013 0.7362 ± 0.0017 0.7368 ± 0.0041

∗∗p < 0.05. Baseline used for comparison: 1MDS, 2MDJ, 3CC-J48, 4ML-KNN.

Table 5. Mean Micro-AUC, with Standard Deviations: Prediction of Rare Diseases across 5 Time Windows

Time Window w1 w2 w3 w4 w5

MDS 0.5031 ± 0.0101 0.5088 ± 0.0044 0.5041 ± 0.0221 0.5072 ± 0.0019 0.5095 ± 0.0016

MDS-Embed1 0.5243 ±0.0194∗∗ 0.5179 ± 0.0169 0.5195 ± 0.0121∗ 0.5122 ± 0.0092 0.5161 ± 0.0099

MDS-KAA1 0.5385 ± 0.0205∗∗ 0.5252 ± 0.0078∗∗ 0.5253 ± 0.0178∗∗ 0.5173 ± 0.0058∗∗ 0.5290 ± 0.0139∗∗

MDJ 0.6521 ± 0.0299 0.6464 ± 0.0169 0.6559 ± 0.0184 0.6496 ± 0.0297 0.6607 ± 0.0149

MDJ-Embed2 0.6594 ± 0.0321 0.6511 ± 0.0235 0.6567 ± 0.0222 0.6549 ± 0.0219 0.6697 ± 0.0292

MDJ-Regu2 0.6560 ± 0.0438 0.6475 ± 0.0398 0.6525 ± 0.0179 0.6550 ± 0.0355 0.6504 ± 0.0151

MDJ-KAA2 0.6627 ± 0.0275∗∗ 0.6638 ± 0.0178∗∗ 0.6704 ± 0.0197∗∗ 0.6630 ± 0.0296∗∗ 0.6770 ± 0.0193∗∗

CC-J48 0.8249 ± 0.0379 0.5723 ± 0.0366 0.6257 ± 0.0267 0.6361 ± 0.0393 0.6281 ± 0.0275

CC-J48-KAA3 0.8392 ± 0.0349∗∗ 0.5897 ± 0.0282∗∗ 0.6367 ± 0.0269∗ 0.6542 ± 0.0499∗ 0.6440 ± 0.0317∗∗

ML-KNN 0.5576 ± 0.0233 0.5543 ± 0.0218 0.5564 ± 0.0350 0.5608 ± 0.0462 0.5498 ± 0.0488

ML-KNN-KAA4 0.5891 ± 0.0338∗∗ 0.5888 ± 0.0305∗∗ 0.5942 ± 0.0370∗∗ 0.5890 ± 0.0602∗∗ 0.5868 ± 0.0491∗∗

∗p < 0.1, ∗∗ p < 0.05. Baseline used for comparison: 1MDS, 2MDJ, 3CC-J48, 4ML-KNN.

5 EXPERIMENTAL RESULTS

5.1 Improvement in Predictive Accuracy

Tables 4 and 5 show the mean and standard deviation (over 10-fold CV) of the micro-AUC obtained
by all the methods for all the diseases and the rare diseases, respectively. They are broken down
by the length of the time window, w . Results at the level of disease labels (i.e., for each of the 30
disease labels) at w1 are presented in Appendix G.

Both MDS-KAA and MDJ-KAA models significantly outperform MDS and MDJ models, respec-
tively, for all five time windows. This shows that the use of KG through KAA indeed improves
the predictive performance for all five time windows irrespective of whether multiple diseases are
modeled separately or jointly. In addition, we notice that the performance increase from MDS to
MDS-KAA model is larger than that from MDJ to MDJ-KAA model. This is understandable, since
MDS models do not learn the correlations between diseases during model training, while MDJ
models do learn these data-driven correlations due to co-training. Thus, the incremental improve-
ment due to KAA is more for MDS models. More interestingly, our KAA approach improves the
performance of MDJ as well where data-driven correlations have been learned by the model during
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training. This clearly illustrates the benefits of additional information from clinical knowledge that
is added through KAA for both overall predictive performance and, in particular, for rare diseases.

We observe that the performance values of MDJ and MDJ-Regu model are similar: There is no
significant difference in the micro-AUC values in all cases. These results demonstrate that the reg-
ularization method employed in MDJ-Regu is not effective in improving predictive performance.
Similar findings, that there is limited increase in predictive performance, was reported by Refer-
ence [10] when the ICD-9 hierarchy was used to obtain disease similarities in their experiments.
Incorporating the knowledge embeddings as inputs, through MDS-Embed, improves the predic-
tion performance of MDS for all diseases as well as rare diseases. However, the improvement in
performance from MDS-KAA is higher. In the case of MDJ, using embeddings as inputs through
MDJ-Embed does not outperform MDJ-Regu when all diseases are considered. In the case of rare
disease, the performance of MDJ-Embed is comparable or marginally better than MDJ-Regu. In
both cases, MDJ-KAA outperforms MDJ-Embed. Note that in our experiments, MDJ, MDJ-Embed,
MDJ-Regu, and MDJ-KAA use the same co-training model (neural network) and use the same
disease similarities obtained from the KG. These results demonstrate that the performance im-
provement observed is not just due to the use of similarities from KG embeddings but also the way
it is used in KAA.

The results for the other classifiers show that KAA improves the performance of CC-J48 for all
diseases as well as rare diseases across all five time windows. For ML-KNN, KAA is able to improve
the predictive performance in predicting rare diseases, and for all diseases, the performance is com-
parable to the case without KAA. A paired sample t-test [56] at significance level 0.05, considering
all the time windows over all 10 folds, was conducted to evaluate the significance of performance
improvement. We find that performance improvements in rare disease prediction due to the use of
KAA are statistically significant for all evaluated MLL models. In the case of all diseases, the use
of KAA results in significant improvements over MDS, MDJ, MDJ-Embed, MDJ-Regu, and CC-J48.
These results illustrate the generality of our KAA method and performance gain especially for rare
diseases.

5.2 Counterfactual Analysis

For clinical predictive models, it is vital that “prediction can lead to actions that reduce risk beyond
what would occur without the prediction rule” [19]. The practical value of a predictive model is
reflected by its ability to facilitate preventive treatments for high-risk patients who otherwise
would not get such interventions. Ideally, the impact of a predictive model should be evaluated
through a randomized clinical trial on two comparable case and control groups. However, clinical
trials are extremely time-consuming and expensive and so, very few clinical predictive models can
be evaluated through such trials.

An alternative, proposed by Reference [30], to quantify the utility of a predictive model in im-
proving decision-making, is through a counterfactual analysis. This is done by constructing a
counterfactual table, as shown in Figure 4, for each predicted disease (or a group of diseases).
We consider all patients who were actually diagnosed with the disease in the period between ti1

and ti1 + 5 and divide them into four groups. The variables a,b, c , and d in the table denote the
number of patients in each of the four groups that satisfy the conditions described below.

Such a counterfactual table can offer several insights. The values a and d represent the events
that are correctly detected by only the physicians (physician utility) and only our predictive model
(model utility), respectively. Values b and c indicate consistency between the physicians’ decision
and our model’s prediction—b: both are correct (positive consistency); c: both are incorrect (neg-
ative consistency). Thus, we view a and c as the model’s errors (these are the cases where the
model predicts “low risk” but the patients are diagnosed with the disease later) and c and d as the

ACM Transactions on Management Information Systems, Vol. 12, No. 3, Article 19. Publication date: May 2021.



Multi-disease Predictive Analytics: A Clinical Knowledge-aware Approach 19:13

Fig. 4. Counterfactual table.

physician’s limitations (no preventive treatment given to patients who were diagnosed later with
the disease). In particular, c should be low, considering that this is the blind area in which both
physicians and predictive models cannot recognize the potential risks.

In our case, the most important value is d ; a higher value indicates greater model utility in
enhancing physician’s capability. Smaller values of a and c indicate fewer prediction errors and
are desirable. To compare two models, a model can be considered more valuable than another if it
yields a smaller value for both a and c and a larger value for d . Constructing this table requires (1)
identifying the cases where physicians recognized future risks (and possibly prescribed preventive
interventions) and (2) determining a threshold for distinguishing high and low predicted risks from
the considered model. We describe below how they both were determined in our experiments.

EHR data does not have information about whether or not the physician actually recognized
the risk of a disease and advised preventive interventions. Moreover, for these 30 diseases, which
includes rare diseases, it is difficult for physicians to recognize future risks and prescribe preventive
interventions. For a rigorous evaluation of our model, we overestimate the physician’s ability by
assuming that if there is a known relation in the biomedical literature (as seen in the knowledge
graph extracted from the literature), then the physician recognizes it and prescribes the appropriate
preventive intervention. No assumptions are made regarding what interventions are provided. The
exact nature of the intervention is not required for our evaluation, since we are only evaluating the
binary decision of whether or not an intervention was prescribed. The relations considered from
the biomedical literature are listed in Appendix H and include 14 relations such as “predisposes,”
“precedes,” “coexists with,” and “causes.” So, if a patient has disease A and disease B is known
to be related to disease A by any of these 14 relations, then we assume that the physician would
prescribe relevant interventions to the patient to prevent disease B. E.g., diabetes (A) is a known to
induce hypertension (B), then we assume that preventive intervention (e.g., lifestyle modifications)
for disease B is advised.

We consider multiple thresholds (10%, 8%, and 6%) for distinguishing high and low predicted
risks from the predictive model. From previous medical literature, we find that it is common to use
20% risk over 10 years as a cutoff between high- and low-risk patients (e.g., Reference [29]). Previ-
ous works, e.g., References [16, 30], proportionally use 10% risk cut-off for 5-year span. Hence, in
our case considering the 4-year span, we can proportionally use 8% risk as the cut-off. Once again,
we make the evaluation more stringent by using a 10% threshold. With a 10% threshold, a patient
is considered to be at high-risk of a disease if the predicted probability of the disease is higher
than 0.1. Using a lower risk threshold would result in the model predicting more patients at high
risk. This would increase the values of b and d in the counterfactual table, thereby showing higher
improvement over physician ability. We illustrate this at two other risk thresholds: 6% and 8%.

Figure 5 presents the aggregated counterfactual results for all the 30 diseases and separately for
the 10 rare diseases using risk threshold of 10% for the predictive models. We compare the results
from MDS (MDJ) with the results from MDS-KAA (MDJ-KAA) to illustrate the practical impact
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Fig. 5. Results of counterfactual analysis (10% cut-off).

of incorporating clinical knowledge. The complete results for each of the 30 diseases are shown
in Appendix H. Despite the assumed overestimate of physician capability, all values for d are
nonzero, indicating that both MDS and MDJ frameworks provide useful insights for augmenting
physicians’ decision-making (regardless of diseases, time windows, and models). Notably, both
MDS-KAA and MDJ-KAA models that incorporate clinical knowledge outperform the vanilla
MDS and MDJ models without knowledge by producing a much smaller value for both a and c
(causing fewer errors) and a much larger value for d (augmenting physician’s capability). These
results demonstrate the efficacy of using our KAA method to leverage clinical knowledge for both
common and rare diseases.

Note that our assumptions impose a stringent standard and the results are a conservative
underestimate of the model abilities. Since we have overestimated physician ability, the values
of a and b in our counterfactual tables are expected to be much lower in practice than what
we have assumed. Lower values of a and b would lead to higher values of c and d, indicating
better model performance compared to the values of d shown now. Moreover, by choosing higher
risk thresholds for the predictive models, we underestimate the model capability. The results in
Appendix H for other risk thresholds (8% and 6%) show the expected increase in model capability.
In particular, for rare diseases, high-risk thresholds should be much lower than 10%. If we reduce
the thresholds to below 6%, then we expect the model performance to improve even further. We
observe improvements even in this rigorous evaluation regime and expect better performance in
less demanding conditions.

6 DISCUSSION AND IMPLICATIONS

6.1 Contributions to the Literature

This study contributes to existing knowledge base in several ways. First, we design a novel
approach to augment MDPA models that can significantly enhance physicians’ capabilities for
decision-making. MDPA models combined with KAA can capture and utilize correlations between
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diseases from not only data-driven models but also KGs derived from biomedical literature. We val-
idate our KAA approach using real EHR data. Empirical results reveal that the predictive perfor-
mance of several MDPA models significantly improve with the use of KAA. Overall improvement
in predictive performance is seen for all the diseases tested, including rare diseases that are harder
to diagnose.

Second, our optimization procedure is flexible and generalizable. It can be combined with any
existing MLL approach and can be used with any knowledge graph. Unlike previous approaches
that are applied during model training and require modifications in the training process, KAA
is applied on the initial predictions obtained from data-driven predictive models. Thus, it can be
used with any MDPA model and can easily incorporate the latest knowledge from the biomedical
literature without re-training of the MDPA model. In addition, our KAA model does not use a
limited subset of biomedical literature (e.g., ICD-9 hierarchy) but associations derived from the
entire literature. Moreover, since these associations are automatically mined, the KAA approach
can scale well with the fast-growing body of biomedical literature.

Finally, we establish several design principles (i.e., corresponding to the steps in our KAA ap-
proach) for MDPA. These design principles can be applied when building an MLL framework to
refine the predictions obtained from purely data-driven predictive models through the optimiza-
tion process using similarities generated from a KG. Such prescriptive knowledge advanced in this
study, as “nascent design theory” [21], is generalizable to other contexts of integrating human
knowledge with predictive models.

6.2 Managerial and Practical Implications

Healthcare resources in hospitals are always limited and have to be utilized effectively for maxi-
mum impact on patients’ welfare. To do so, hospitals need to not only design the best treatment
plans for current conditions of patients but also provide preventive interventions to alleviate po-
tential future problems of patients. Over-investing in the provision of preventive interventions
leads to wastage of hospital resources, while under-investing in the provision of preventive inter-
ventions potentially increases morbidity rates. Accurate MDPA models allow hospitals to prescribe
appropriate levels of preventive interventions for each patient, thereby alleviating the problem of
over-investing or under-investing in the provision of preventive interventions. From a patient’s
perspective, if they are made aware of their risks of various diseases in advance, then they can
take actions to reduce the chances of occurrence of these diseases or reduce the severity of their
effects, such as through self-management of their daily lives.

Early diagnosis can also lead to significant financial savings. A study revealed that having one
additional chronic condition, on average, can cause a patient to incur an additional $2,000 in health-
care spending per year [18]. Common diseases (e.g., Diabetes mellitus and Hypertension) have very
large patient size and broad societal impact. For instance, as of 2015, 415M people are estimated to
have diabetes worldwide [25] and diabetic patients in the United States alone incur a medical cost
of $322B per year [8]. Rare diseases are more difficult to identify and may be life-threatening. It
can take over seven years, on average, to accurately detect rare diseases [46], leading to prolonged
clinical and economic burden.

Although physicians are highly trained professionals in their specific care domain, rare dis-
eases may be overlooked or may be out of the scope of their expertise. Biomedical literature is
being created at a rapid rate, and physicians may not have enough time beyond their daily prac-
tice to review new knowledge. By leveraging such biomedical literature in a scalable manner, our
KAA framework significantly strengthens the capability of predictive systems to offer physicians
valuable clinical decision support during the care-giving process.
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6.3 Limitations and Future Research

KAA has been evaluated using predictions that were refined using disease similarities using KG
embeddings, where other clinical relationships were indirectly modeled. Future studies can con-
sider other relationships (e.g., drug-disease relationships) and extend KAA to directly incorporate
these relationships. Our empirical results are obtained based on analyses performed using one
EHR dataset. Future work can validate KAA using additional data. Finally, KAA incorporates clin-
ical knowledge after the process of modeling multiple diseases. While there are benefits of such
an approach as described earlier, it may be possible to improve the predictive accuracy further
by integrating clinical knowledge both during modeling and prediction, which future studies can
explore.

7 CONCLUSION

This study proposes a novel KAA to enhance data-driven models for MDPA with knowledge from
biomedical literature during risk prediction. Our empirical results demonstrate that KAA indeed
increases the predictive performance of purely data-driven models for both common and rare
diseases. Compared to extant approaches of combined knowledge-based data-driven modelling,
KAA offers a more flexible approach, as it can be used in any underlying data-driven MDPA model.
This study provides the impetus for further research to leverage the combination of knowledge
graphs, which are automatically mined from rapidly growing biomedical literature, and machine
learning models, trained on increasingly available EHR data, in creative ways to address complex
healthcare challenges.
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APPENDICES

A SEMMEDDB RELATIONSHIPS

Tables 6 and 7 lists the relationships found in SemMedDB [28].

Table 6. Summary of Relationships in SemMedDB

No. Relationship Name: Explanation Examples and Remarks

1 ADMINISTERED_TO: Given to an entity, when no
assertion is made that the substance or procedure is
being given as treatment.

Patients with single brain lesion received an extra 3 Gy x 5 radiotherapy
.... C0034618: Radiation therapy (Therapeutic or Preventive Procedure) -
ADMINISTERED_TO - C0030705: Patients (Human).

2 AFFECTS: Produces a direct effect on. Implied here is
the altering or influencing of an existing condition,
state, situation, or entity.

BAP31 and its caspase cleavage product regulate cell surface expression
of tetraspanins and integrin-mediated cell survival. C1424489: BCAP31
gene (Gene or Genome) - AFFECTS - C0007620: Cell Survival (Cell Function)

3 ASSOCIATED_WITH: Has a relationship to (gene-
disease relation).

EP2 plays a critical role in tumorigenesis in mouse mammary gland ...
C1419062: PTGER2 gene (Gene or Genome) - ASSO- CIATED_WITH -
C1326912: Tumorigenesis (Neoplastic Process)

4 AUGMENTS: Expands or stimulates a process. Nicotine induces conditioned place preferences over a large range of
doses in rats. C0028040: Nicotine (Organic Chemical) - AUG- MENTS -
C0815102: place preference learning (Mental Process)

5 CAUSES: Brings about a condition or an effect. Implied
here is that an agent, such as for example, a
pharmacologic substance or an organism, has brought
about the effect. This includes induces, effects, evokes,
and etiology.

Neurocysticercosis (NCC) is one of the major causes of neurological
disease ... C0338437:Neurocysticercosis (Disease or Syndrome) - CAUSES -
C0027765: nervous system disorder (Disease or Syndrome)

6 COEXISTS_WITH: Occurs together with, or jointly. Food intolerance-related constipation is characterized by proctitis.
C0009806: Constipation (Sign or Symptom) - COEX ISTS_WITH - C0033246:
Proctitis (Disease or Syndrome)

7 CONVERTS_TO: Changes from one form to another
(both substances).

... plasma nitrite is readily oxidized to nitrate within plasma ... C0028137:
Nitrites (Chemical Viewed Structurally) - CONVERTS_TO - C0699857:
Nitrate (Inorganic Chemical)

8 COMPLICATES: Causes to become more severe or
complex, or results in adverse effects.

Infections can trigger GBS and exacerbate CIDP. C0021311: Infection
(Disease or Syndrome) - COMPLI CATES - C0393819:
Polyradiculoneuropathy, Chronic Inflammatory Demyelinating (Disease or
Syndrome)

9 DIAGNOSES: Distinguishes or identifies the nature or
characteristics of.

Manometry showed a higher anal sphincter resting pressure ... C0024751:
Manometry (Laboratory Procedure) - DIAG NOSES - C0429217: Anal
sphincter pressure (Finding)

10 DISRUPTS: Alters or influences an already existing
condition, state, or situation. Produces a negative effect
on.

Overexpression of NF-kappaB inhibits tumor cell apoptosis. C0079904:
NF-kappaB (Amino Acid, Peptide, or Protein) - DISRUPTS - C0162638:
Apoptosis (Cell Function)

11 INHIBITS: Decreases, limits, or blocks the action or
function of (substance interaction).

In recent studies, the BDNF expression was reduced by typical
neuroleptics. C0040615: Antipsychotic Agents (Pharmacologic Sub stance) -
INHIBITS - C0107103: Brain-Derived Neurotrophic Factor (Biologically
Active Substance)

12 INTERACTS_WITH: Substance interaction. Here, we show that chymases, which are chymotryptic peptidases
secreted by mast cells, hydrolyze HGF ... C0055673: Chymase (Enzyme) -
INTERACTS_WITH- C0062534: Hepatocyte Growth Factor (Amino Acid,
Peptide, or Protein)

13 ISA: The basic hierarchical link in the UMLS Semantic
Network. If one item is another item, then the first item
is more specific in meaning than the second item.

The sympathetic neurotransmitter norepinephrine has been found ...
C0028351: Norepinephrine (Neuroreactive Substance or Biogenic Amine) -
ISA - C0027908: Neurotransmitters (Neuroreactive Substance or Biogenic
Amine)

14 LOCATION_OF: The position, site, or region of an
entity or the site of a process.

We report a case of primary cardiac epithelioid hemangioendothelioma
arising from the right atrium of a 2-month-old infant. C1269890: Entire
right atrium (Body Part, Organ, or Organ Component) - LOCATION_OF -
C0206732: Hemangioendothelioma, Epithelioid (Neoplastic Process)

15 MANIFESTATION_OF: That part of a phenomenon that
is directly observable or concretely or visibly expressed,
or that gives evidence to the underlying process. This
includes expression of, display of, and exhibition of.

Recurrence of glomerulopathy underlying ESRD was frequent for IgAN,
FSG... C1261469: End stage renal failure (Disease or Syn drome) -
MANIFESTATION_OF - C1398810: glomerulopathy (Disease or Syndrome)
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Table 7. Summary of Relationships in SemMedDB

No. Relationship Name: Explanation Examples and Remarks

16 METHOD_OF: The manner and sequence of events in
performing an act or procedure.

... because of the use of SSCP as a screening method and sequencing
only a part of TSHR exon 10. C0243031: Single-Stranded Conformational
Poly morphism (Laboratory or Test Result) - METHOD_OF-
C0220908:Screening procedure (Health Care Activity)

17 OCCURS_IN: Has incidence in a group or population. Older populations are more prone to bone loss with weight loss ...
C0599877: loss; bone (Pathologic Function) - OCCUR S_IN - C1518563:
Older Population (Human)

18 PART_OF: Composes, with one or more other physical
units, some larger whole. This includes component of,
division of, portion of, fragment of, section of, and
layer of.

The probasal bodies and microtubules within the blepharoplast
cavities... C0026046: Microtubules (Cell Component) - PAR T_OF -
C0230744: Basal body of cilium or flagellum, not bacterial (Cell
Component)

19 PRECEDES: Occurs earlier in time. This includes
antedates, comes before, is in advance of, predates,
and is prior to.

... the risk of tissue plasminogen activator-induced hemorrhagic
transformation following ischemic stroke in mice ... C0948008: Ischemic
stroke (Disease or Syndrome) - PRECEDES - C1096400: Haemorrhagic
transformation stroke (Disease or Syndrome)

20 PREDISPOSES: To be a risk to a disorder, pathology, or
condition.

... high ghrelin levels contribute to obesity in Prader-Willi syndrome
(PWS) ... C0911014: ghrelin (Amino Acid, Peptide, or Protein) -
PREDISPOSES - C0028754: Obesity (Disease or Syndrome)

21 PREVENTS: Stops, hinders or eliminates an action or
condition.

Ipsapirone and ketanserin protects against circulatory shock,
intracranial hypertension, and cerebral ischemia during heatstroke.
C0123905: ipsapirone (Pharmacologic Substance) - PRE VENTS -
C0151740: Intracranial Hypertension (Disease or Syndrome)

22 PROCESS_OF: Disorder occurs in (higher) organism. ... no information is available in CAD patients with normal glomerular
filtration rate (GFR). C0010054: Coronary Arteriosclerosis (Disease or
Syndrome) - PROCESS_OF - C0030705: Patients (Human)

23 PRODUCES: Brings forth, generates or creates. This
includes yields, secretes, emits, biosynthesizes,
generates, releases, discharges, and creates.

Human EPCs express functional PAR-1... C0038250: Stem cells (Cell) -
PRODUCES - C0668084: Receptor, PAR-1 (Amino Acid, Peptide, or Protein)

24 STIMULATES: Increases or facilitates the action or
function of (substance interaction).

Candesartan therapy significantly reduced inflammation and increased
adiponectin levels ... C0717550: candesartan (Pharmacologic Substance) -
STIMULATES - C0389071: Adiponectin (Amino Acid, Peptide, or Protein)

25 TREATS: Applies a remedy with the object of effecting
a cure or managing a condition.

This study initially surveyed 163 patients with clinical stage Ib or IIa
cervical adenocarcinoma treated with radical hysterectomy and pelvic
lymphadenectomy. C0677962: Radical hysterectomy (Therapeutic or Pre
ventive Procedure) - TREATS - C0279672: Cervical Adenocarcinoma
(Neoplastic Process)

26 USES: Employs in the carrying out of some activity.
This includes applies, utilizes, employs, and avails.

Pre-emptive therapy with oral valganciclovir for CMV infections...
C0087111: Therapeutic procedure (Therapeutic or Preventive Procedure) -
USES - C0909381: valganciclovir (Pharmacologic Substance)

27 COMPARED_WITH: Comparative predicate. Compared with placebo, candesartan therapy significantly lowered
plasma hsCRP levels... C0032042: Placebos (Medical Device) -
COMPARED_- WITH - C0717550: candesartan (Pharmacologic Substance)

28 HIGHER_THAN: Comparative predicate. Losartan was more effective than atenolol in reducing cardiovascular
morbidity... C0126174: Losartan (Organic Chemical) - HIGH ER_THAN -
C0004147: Atenolol (Organic Chemical)

29 LOWER_THAN: Comparative predicate. Amoxicillin - Clavulanate was not as effective as ciprofloxacin for
treating uncomplicated bladder infection in women. C0054066:
Amoxicillin-Potassium Clavulanate Combi nation (Antibiotics) -
LOWER_THAN - C0008809: Ciprofloxacin (Pharmacologic Substance)

30 SAME_AS: Comparative predicate. Candesartan is as effective as lisinopril once daily in reducing blood
pressure. C0717550: candesartan (Organic Chemical) - SAME_AS -
C0065374: Lisinopril (Amino Acid, Peptide, or Protein)
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B KNOWLEDGE GRAPH EMBEDDING USING TRANSE

The TransE model is a technical tool used in this study to obtain graph embeddings (i.e., these
vector representations containing information on relationships between diseases and other clini-
cal concepts (e.g., drugs)). So, diseases with similar clinical relationships in the knowledge graph
will have similar vector representations. These vector representations are further used to obtain
similarity between diseases in the augmentation procedure of our KAA approach. The graph in
this study is the SemMedDB knowledge graph organized in the form of triples (CUI of disease1, re-
lationship, CUI of disease2), as described above. The embedding obtained through TransE aims to
encode global structural knowledge of the graph. We briefly describe the intuition behind TransE
and refer the reader to Reference [4] for more details. Given a training set S of triplets (h, l , t )
composed of two entities head disease h, tail disease t , and h, t ∈ E (the set of clinical concepts),
and a relationship l ∈ L (the set of relationships; head disease has the relationship l to tail disease),
TransE model outputs k-dimensional vector representations of the entities and the relationships
(where k is a hyperparameter, set to 200 in our experiments). The basic idea behind TransE model
is that the relationship induced by the l-labeled edges corresponds to a translation of the vector
representations. That is, we want that in vector-space h + l ≈ t when (h, l , t ) holds in the graphs
(i.e., head disease h adding the relationship l should be close to tail disease t ). If the triplet (h, l , t )
is not present, then h + l should be far away from t in vector space. Following an energy-based
framework, the energy of a triplet is equal to d (h + l , t ), where d is a dissimilarity measurement
function (e.g., L1 or the L2 norm). To learn the vector representations, a margin-based ranking
criterion is minimized over the training set:

L =
∑

(h,l,t )∈S

∑

(h
′
,l
′
,t
′
)∈S ′

(h,l,t )

[γ + d (h + l , t ) − d (h
′
+ l , t

′
)]+,

(6)

where [x]+ denotes the positive part of x ,γ > 0 denotes a positive margin hyperparameter, and

S
′

(h,l,t ) = (h
′
, l , t ) |h′ � E ∪ (h, l , t

′
) |t ′ � E. (7)

The set of corrupted triplets S
′

in Equation (7), consists of training triplets containing either
the head diseases or tail diseases replaced by a random entity (but not both at the same time,

denoted by h
′

or t
′
). The loss function (6) favors lower values of the energy for training triplets

than for corrupted triplets and thus implement the intended criterion. For a given entity, its vector
representation is the same as either the head or the tail of a triplet.

Fig. 6. Regularization of network weights.
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C NEURAL NETWORK REGULARIZATION USING DISEASE SIMILARITIES

(MDJ-REGU)

As shown in Figure 6, Reference [10] used a deep feed-forward neural network, with L hidden lay-
ers and an output prediction layer for multi-label classification, givenK features of a set of samples
X = x1,x2, . . . ,xN and the set of labels Y = y1,y2, . . . ,y J , where xi ∈ RK ,yi ∈ (0, 1) j , (1 ≤ i ≤ N ).

We use θ = (θhid ,B) to denote the model parameters and θhid = (W (l ),b (l ) )
L
(l=1) denotes the

weights for the hidden layers (each with D (l ) units) where D (0) = K . The J columns of

B = [β1, β2, . . . , β J ] from the last hidden layer are the prediction parameters (where βj ∈ RD (L)
).

The neural network consists of fully connected layers, linear activation (W (l )h (l−1) + b (l ) ) (where
h (0) = xi ) and sigmoid nonlinearities (δ (z) = 1/(1 + exp (−z)). The conditional likelihood of yi

given xi and model parameters θ can be written as:

log P (yi |xi ,θ ) =

J∑

j=1

[ϵj logδ j (βᵀj hj ) + (1 − ϵj ) log(1 − δ j ) (βᵀj hj )], (8)

tr (BᵀB) =
1

2

∑

1≤j, j
′ ≤ J

Aj, j
′ |βj − β

′
j |22 , (9)

where tr (.) represents the trace operator, the graph Laplacian regularizer enforces the parameters
βj and βj

′ to be similar, proportional to Aj, j
′ . The regularized loss function is:

L = −
N∑

i=1

logp (yi |xi ,θ ) +
ρ

2
tr (BᵀB), (10)

where rho > 0 are the Laplacian hyperparameters. Thus, the similarity value in Aj, j
′ affects the

parameters βj and βj
′ , brings them closer, which in turn makes the predictions for diseases j, j

′

similar.

D TRAINING MDS AND MDJ MODELS

During training, a classifier has to be chosen in both MDS and MDJ frameworks. Any statistical or
machine learning method to obtain J binary classifiers дj (for MDS) and co-trained structureC (x )
and δ j , (1 ≤ j ≤ J ) (for MDJ) can be adopted. We use a deep neural network (DNN) model with
two hidden layers. Hyperparameter tuning can be done on a randomly chosen validation set (that
is separated out from the training data). In our experiments, the learning rate, batch size, and two
hidden layer sizes for binary classifier дj are set to 0.008, 50, 100, 100, respectively. The same set of
hyperparameters for the co-trained neural network C are set to 0.008, 75, 2000, 100, and a sigmoid
activation function is used for δ j . Number of epochs was set to 100 for MDS and 180 for MDJ. If

a binary label is required from the prediction probabilities (P
′
j ), then a threshold probability value

has to be chosen: The label is set to 1 above this threshold and to 0 below the threshold. We set
the threshold value to a constant a across all labels. This value is chosen empirically to maximize
the overall F-measure on the training data [45].

E KAA: ALGORITHM DESCRIPTION

Table 8 below lists all the steps for using KAA with an MDPA model and a Knowledge Graph.
Hyperparameter ϵ for KAA andγ for the RBF kernel may be selected by grid search by evaluating

the performance on a randomly chosen validation set (that is separated out from the training
data). In our experiments, we use ϵ = 0.9,γ = 0.01. λ can be set to a low value, e.g., 0.0001; in
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Table 8. Algorithm for KAA

INPUT: Disease Probabilities Pj for J diseases from any MDPA model, Knowledge Graph KG
1: Obtain disease embeddings dj for all 1 ≤ j ≤ J by using TransE on KG
2: Compute pairwise similarities of diseases, S j,k = exp(−γ ‖dj − dk ‖)2 where 1 ≤ j,k ≤ J

3: Initialize P
′ (t=0)
j = Pj for 1 ≤ j ≤ J

4: Do:
5: For each j (disease):

6: Update P
′ (t )
j = (1 − ϵ )

∑J

k=1
Sj,k ,P

′ (t−1)
k

‖Sj,∗ ‖1 + ϵPj (using Equation (5))

7: t = t + 1

7: Until f (P
′ (t+1)
j ) − f (P

′ (t )
j ) < λ

OUTPUT: Knowledge-refined probabilities P
′
j for J input diseases

Table 9. Summary of the 30 Selected Diseases

No. Disease Name Abbreviation Disease Examples (ICD-9-CM codes)

1 Septicemia (except in labor) SEP Septicemia (038)

2 Acute and unspecified renal failure ARF Kidney Failure, Acute (5849)

3 Congestive heart failure; nonhypertensive CHF Congestive Heart Failure (4280)

4 Pneumonia (except that caused by
tuberculosis or sexually transmitted
disease)

PNE Pneumonia due to other specified
bacteria (4828)

5 Fluid and electrolyte disorders FED Electrolyte and fluid disorders not
elsewhere classified (2769)

6 Other liver diseases LD Non-alcoholic Fatty Liver (5718)

7 Hypertension with complications and
secondary hypertension

HCSH Cardiovascular Diseases (3062);
Coronary Heart Diseases (402)

8 Deficiency and other anemia DA folate-deficiency anemia (2812)

9 Other nutritional; endocrine; and
metabolic disorders

MD Obesity (2780)

10 Essential hypertension EH Essential Hypertension (401)

11 Coronary atherosclerosis and other heart
disease

CAH Coronary Arteriosclerosis (4140)

12 Diabetes mellitus without complication DWC Glucose Intolerance (2713)

13 Disorders of lipid metabolism DLM Hypercholesterolemia (2720, 2722)

14 Diabetes mellitus with complications DMC Diabetic Retinopathy (36201-36207)

15 Cardiac dysrhythmias CD Cardiac dysrhythmias (427)

16 Other nervous system disorders NSD Unspecified disorders of nervous
system (3499)

17 Heart valve disorders HVD Aortic Valve Stenosis (3960)

18 Esophageal disorders ED Esophageal hemorrhage (53082)

19 Hodgkin‘s disease HD Hodgkin’s disease (201)

20 Respiratory failure; insufficiency; arrest
(adult)

RF Acute respiratory failure (51881)

21 Multiple myeloma MM Multiple myeloma (2030)

22 Chronic kidney disease CKD Chronic kidney disease (585)

(Continued)
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Table 9. Continued

No. Disease Name Abbreviation Disease Examples (ICD-9-CM codes)

23 Systemic lupus erythematosus and
connective tissue disorders

SLE Systemic lupus erythematosus (7100)

24 Other non-epithelial cancer of skin NECS Skin of trunk, except scrotum (1735)

25 Cancer of liver and intrahepatic bile duct CIBD Intrahepatic bile ducts (1551)

26 Melanomas of skin MOS Malignant melanoma of skin (172)

27 Multiple sclerosis MS Multiple sclerosis (340)

28 Other CNS infection and poliomyelitis CNS Acute poliomyelitis (045)

29 Lymphadenitis LYM Acute lymphadenitis (683)

30 Cancer of rectum and anus CRA Malignant neoplasm of rectum,
rectosigmoid junction, and anus (154)

our experiments, the difference in loss between successive iterations reaches zero within 10–15
iterations.

In our experiments, detailed in Section 4, we have considered 30 diseases (shown in Table 9)
from the MIMIC-III clinical database. The Knowledge Graph used is SemMedDB [28]. Table 11 in
Appendix G lists the risk probabilities obtained for these 30 diseases at time window 1 from the
neural network models MDS and MDJ in columns (1) and (3), respectively. The KAA procedure is
applied on these probabilities to obtain knowledge-refined probabilities from MDS-KAA and MDJ-
KAA in columns (2) and (4), respectively. Similarly, KAA is applied on other Multi-label Learning
methods and the overall summary of results for all time windows are shown in Tables 4 and 5.

F DETAILS OF 30 SELECTED DISEASES

We simultaneously model and predict patients’ risks of having 30 diseases (listed in Table 9). These
diseases are identified based on the diagnostic definitions from the Health Cost and Utilization

Clinical Classification Software (HCUP CCS) [23]. HCUP CCS definitions can cluster ICD-9
diagnostic codes found in EHR data into mutually exclusive, broadly homogeneous disease cate-
gories to reduce the noise, ambiguity, and redundancy in the original ICD-9 diagnostic codes. As
a result, there are a total of 268 diseases identified from the MIMIC-III dataset.

Table 10. The Summary of the Rarity of Rare Diseases

Rare diseases name Frequency Imbalance ratio
Hodgkin‘s disease 574,000 362.4
Multiple myeloma 488,200 301.1
Systemic lupus erythematosus and
connective tissue disorders

20–70 per 100,000 148.6

Other non-epithelial cancer of skin 392,000 89.7
Cancer of liver and intrahepatic bile duct 1–2 per 100,000 109.5
Melanomas of skin 3,100,000 113.6
Multiple sclerosis 2,000,000 208.5
Other CNS infection and poliomyelitis - 171.9
Lymphadenitis - 216.4
Cancer of rectum and anus 3,000,000 250.5
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Rare Diseases

To validate the the rarity of the selected rare diseases, we present their frequency (i.e., the propor-
tion of world population affected by these diseases in 2015) [6, 15, 41] and their imbalance ratios
calculated from our dataset, as shown in Table 10. Any disease, disorder, illness, or condition af-
fecting fewer than 200,000 people in the United States is regarded rare by the National Institutes

of Health (NIH) and the U.S. Food and Drug Administration (FDA) [9]. To generalize this
definition to the rest of the world, we compute the prevalence proportion as 6.23 × 10−4 using the
estimated population of the U.S. as 321M [7]. Using this proportion and the estimated world popu-
lation of 7.358B [37], we get the definition of rare disease to be less than either 4,580,000, or 63 per
100,000 in the world. As shown in Table 3, we find that the diseases selected from our dataset are
rare by this definition. The frequency of two diseases—“Other CNS infection and poliomyelitis”
and “Lymphadenitis”—could not be found, but both of them should be rare, too, according to their
high imbalance ratios.

G RESULTS OF INDIVIDUAL DISEASES

Table 11 shows the results for individual diseases.

Table 11. Results of Individual Disease at w1

NO. Disease name MDS MDS-KAA MDJ MDJ-KAA
(1) (2) (3) (4)

1 SEP 0.5144 0.5494 0.5357 0.5498
2 ARF 0.5503 0.5804 0.5766 0.5920
3 CHF 0.5815 0.6158 0.6398 0.6472
4 PNE 0.5053 0.5309 0.5179 0.5464
5 FED 0.5161 0.5161 0.5704 0.5704
6 LD 0.5757 0.5861 0.6247 0.6365
7 HCSH 0.5782 0.5782 0.6654 0.6654
8 DA 0.5236 0.5427 0.5452 0.5603
9 MD 0.5350 0.5358 0.5613 0.5887
10 EH 0.5491 0.5491 0.5773 0.5783
11 CAH 0.5817 0.5770 0.6633 0.6681
12 DWC 0.5471 0.5545 0.6476 0.6509
13 DLM 0.5772 0.5772 0.6039 0.6039
14 DMC 0.5769 0.5771 0.6825 0.6758
15 CD 0.5729 0.5953 0.6078 0.6204
16 NSD 0.5396 0.5291 0.5899 0.5922
17 HVD 0.5661 0.5867 0.6187 0.6264
18 ED 0.5610 0.5610 0.5920 0.5920
19 HD 0.4876 0.4876 0.7684 0.7684
20 RF 0.5293 0.5546 0.5696 0.5875
21 MM 0.4896 0.7449 0.5570 0.7066
22 CKD 0.6265 0.6570 0.6982 0.7064
23 SLE 0.5271 0.6267 0.6717 0.6897
24 NECS 0.5003 0.5003 0.5701 0.5701
25 CIBD 0.5256 0.5256 0.6734 0.6831
26 MOS 0.5127 0.5127 0.6648 0.6648

(Continued)
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Table 11. Continued

NO. Disease name MDS MDS-KAA MDJ MDJ-KAA
(1) (2) (3) (4)

27 MS 0.5209 0.5209 0.8261 0.8419
28 CNS 0.4882 0.4882 0.6263 0.6263
29 LYM 0.4882 0.4882 0.5146 0.5146
30 CRA 0.4909 0.4909 0.5713 0.5713

H COUNTERFACTUAL ANALYSIS

Table 12 lists the positive associations in SemMedDB considered as triggers for diseases.

Table 12. Summary of Positive Relationships between Diseases

Relationship Explanation
AFFECTS Produces a direct effect on
AUGMENTS Expands or stimulates a process
CAUSES Brings about a condition or an effect
COEXISTS_WITH Occurs together with, or jointly
CONVERTS_TO Changes from one form to another
COMPLICATES Causes to become more severe or complex, or results in adverse effects
ISA The first item is more specific in meaning than the second item
MANIFESTATION_OF That part of a phenomenon that is directly observable
OCCURS_IN Has incidence in a group
PRECEDES Occurs earlier in time
PREDISPOSES To be a risk to a disorder, pathology, or condition
PRODUCES Brings forth, generates or creates
STIMULATES Increases or facilitates the action or function of
SAME_AS Comparative predicate

Figures 7 and 8 show the results at 8% and 6% cut-off values to distinguish between high-risk
and low-risk based on model predictions.
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Fig. 7. Results of counterfactual analysis (8% cut-off).

Fig. 8. Results of counterfactual analysis (6% cut-off).
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The results for individual diseases with MDS model are shown in Tables 13, 14, and 15 for cut-off
values 10%, 8%, and 6%, respectively.

Table 13. Results of Counterfactual Analyses for MDS (10% Cut-off)

Disease MDS-not-KAA MDS-KAA
name a b c d a b c d
SEP 932 726 105 62 492 1,166 69 98
ARF 1,217 980 85 45 719 1,478 61 69
CHF 1,268 1,285 67 37 768 1,785 41 63
PNE 767 567 177 88 416 918 116 149
FED 516 588 1,072 741 516 588 1,072 741
LD 468 369 100 45 255 582 57 88

HCSH 388 335 524 232 388 335 524 232
DA 1,101 962 178 113 630 1,433 125 166
MD 208 190 348 182 116 282 210 320
EH 1,229 1,298 217 172 994 1,533 169 220

CAH 840 889 416 239 523 1,206 253 402
DWC 865 671 67 49 485 1,051 39 77
DLM 588 619 574 329 588 619 574 329
DMC 415 305 157 62 415 305 157 62
CD 994 1,137 354 245 568 1,563 232 367

NSD 574 421 349 127 323 672 220 256
HVD 466 375 306 136 257 584 171 271
ED 310 311 505 264 310 311 505 264
HD 15 9 4 2 15 9 4 2
RF 387 457 793 547 208 636 473 867

MM 16 8 12 3 11 13 9 6
CKD 366 400 577 216 210 556 388 405
SLE 43 27 8 6 16 54 3 11

NECS 19 12 55 23 19 12 55 23
CIBD 42 30 27 12 34 38 21 18
MOS 39 21 18 7 39 21 18 7
MS 32 12 6 2 30 14 6 2

CNS 21 13 9 7 21 13 9 7
LYM 2 3 34 8 2 3 34 8
CRA 12 11 14 3 12 11 14 3

Overall Diseases 14,140 13,031 7,158 4,004 9,380 17,791 5,629 5,533
Rare Diseases 241 146 187 73 199 188 173 87
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Table 14. Results of Counterfactual Analyses for MDS (8% Cut-off)

Disease MDS-not-KAA MDS-KAA
name a b c d a b c d
SEP 932 726 105 62 424 1,234 63 104
ARF 1,217 980 85 45 622 1,575 57 73
CHF 1,268 1,285 67 37 675 1,878 39 65
PNE 767 567 177 88 355 979 104 161
FED 516 588 1,072 741 516 588 1,072 741
LD 468 369 100 45 229 608 53 92

HCSH 388 335 524 232 388 335 524 232
DA 1,101 962 178 113 544 1,519 104 187
MD 208 190 348 182 96 302 177 353
EH 1,229 1,298 217 172 944 1,583 164 225

CAH 840 889 416 239 500 1,229 229 426
DWC 865 671 67 49 424 1,112 36 80
DLM 588 619 574 329 588 619 574 329
DMC 415 305 157 62 415 305 157 62
CD 994 1,137 354 245 538 1,593 224 375

NSD 574 421 349 127 277 718 191 285
HVD 466 375 306 136 236 605 163 279
ED 310 311 505 264 310 311 505 264
HD 15 9 4 2 15 9 4 2
RF 387 457 793 547 185 659 427 913

MM 16 8 12 3 8 16 9 6
CKD 366 400 577 216 189 577 357 436
SLE 43 27 8 6 15 55 3 11

NECS 19 12 55 23 19 12 55 23
CIBD 42 30 27 12 32 40 20 19
MOS 39 21 18 7 39 21 18 7
MS 32 12 6 2 27 17 6 2

CNS 21 13 9 7 21 13 9 7
LYM 2 3 34 8 2 3 34 8
CRA 12 11 14 3 12 11 14 3

Overall Diseases 14,140 13,031 7,158 4,004 8,645 18,526 5,392 5,770
Rare Diseases 241 146 187 73 190 197 172 88
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Table 15. Results of Counterfactual Analyses for MDS (6% Cut-off)

Disease MDS-not-KAA MDS-KAA
name a b c d a b c d
SEP 931 727 105 62 382 1,276 54 113
ARF 1,217 980 85 45 573 1,624 53 77
CHF 1,267 1,286 67 37 625 1,928 36 68
PNE 767 567 177 88 315 1,019 96 169
FED 516 588 1,072 741 516 588 1,072 741
LD 468 369 100 45 171 666 46 99

HCSH 388 335 524 232 388 335 524 232
DA 1,101 962 178 113 491 1,572 96 195
MD 208 190 348 182 82 316 141 389
EH 1,229 1,298 217 172 843 1,684 149 240

CAH 840 889 416 239 459 1,270 208 447
DWC 865 671 67 49 378 1,158 33 83
DLM 588 619 574 329 588 619 574 329
DMC 415 305 157 62 415 305 157 62
CD 994 1,137 354 245 432 1,699 176 423

NSD 574 421 349 127 209 786 154 322
HVD 466 375 306 136 199 642 137 305
ED 310 311 505 264 310 311 505 264
HD 15 9 4 2 15 9 4 2
RF 387 457 793 547 139 705 346 994

MM 16 8 12 3 4 20 8 7
CKD 366 400 577 216 164 602 303 490
SLE 43 27 8 6 14 56 2 12

NECS 19 12 55 23 19 12 55 23
CIBD 42 30 27 12 31 41 19 20
MOS 39 21 18 7 39 21 18 7
MS 32 12 6 2 22 22 4 4

CNS 21 13 9 7 21 13 9 7
LYM 2 3 34 8 2 3 34 8
CRA 12 11 14 3 12 11 14 3

Overall Diseases 14,138 13,033 7,158 4,004 7,858 19,313 5,027 6,135
Rare Diseases 241 146 187 73 179 208 167 93
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The results for individual diseases with MDJ model are shown in Tables 16, 17, and 18 for cut-off
values 10%, 8%, and 6%, respectively.

Table 16. Results of Counterfactual Analyses for MDJ (10% Cut-off)

Disease MDJ-not-KAA MDJ-KAA
name a b c d a b c d
SEP 936 722 105 62 521 1,137 75 92
ARF 1,232 965 95 35 720 1,477 63 67
CHF 1,239 1,314 65 39 807 1,746 43 61
PNE 789 545 176 89 435 899 116 149
FED 504 600 1,057 756 504 600 1,057 756
LD 408 429 108 37 233 604 72 73

HCSH 305 418 512 244 305 418 512 244
DA 1,070 993 182 109 638 1,425 119 172
MD 196 202 360 170 112 286 228 302
EH 1,241 1,286 225 164 992 1,535 182 207

CAH 803 926 440 215 549 1,180 258 397
DWC 788 748 73 43 448 1,088 45 71
DLM 533 674 586 317 533 674 586 317
DMC 382 338 159 60 382 338 159 60
CD 954 1,177 385 214 599 1,532 254 345

NSD 558 437 341 135 325 670 233 243
HVD 406 435 303 139 235 606 172 270
ED 266 355 488 281 266 355 488 281
HD 15 9 4 2 15 9 4 2
RF 368 476 811 529 205 639 501 839

MM 15 9 11 4 8 16 8 7
CKD 326 440 564 229 190 576 380 413
SLE 36 34 8 6 19 51 6 8

NECS 18 13 58 20 18 13 58 20
CIBD 28 44 29 10 23 49 26 13
MOS 34 26 18 7 34 26 18 7
MS 29 15 6 2 27 17 6 2

CNS 19 15 8 8 19 15 8 8
LYM 2 3 34 8 2 3 34 8
CRA 11 12 14 3 11 12 14 3

Overall Diseases 13,511 13,660 7,225 3,937 9,175 17,996 5,725 5,437
Rare Diseases 207 180 190 70 176 211 182 78
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Table 17. Results of Counterfactual Analyses for MDJ (8% Cut-off)

Disease MDJ-not-KAA MDJ-KAA
name a b c d a b c d
SEP 936 722 105 62 468 1,190 63 104
ARF 1,231 966 95 35 644 1,553 58 72
CHF 1,239 1,314 65 39 735 1,818 38 66
PNE 789 545 176 89 384 950 105 160
FED 504 600 1,057 756 504 600 1,057 756
LD 407 430 108 37 220 617 68 77

HCSH 305 418 512 244 305 418 512 244
DA 1,070 993 182 109 558 1,505 105 186
MD 196 202 360 170 94 304 197 333
EH 1,240 1,287 225 164 951 1,576 177 212

CAH 803 926 440 215 522 1,207 245 410
DWC 788 748 73 43 419 1,117 40 76
DLM 533 674 586 317 533 674 586 317
DMC 382 338 159 60 382 338 159 60
CD 952 1,179 385 214 556 1,575 237 362

NSD 558 437 341 135 288 707 210 266
HVD 406 435 303 139 223 618 159 283
ED 266 355 488 281 266 355 488 281
HD 15 9 4 2 15 9 4 2
RF 368 476 811 529 184 660 448 892

MM 15 9 11 4 8 16 8 7
CKD 326 440 564 229 175 591 346 447
SLE 36 34 8 6 17 53 5 9

NECS 18 13 58 20 18 13 58 20
CIBD 28 44 29 10 22 50 25 14
MOS 34 26 18 7 34 26 18 7
MS 29 15 6 2 27 17 6 2

CNS 19 15 8 8 19 15 8 8
LYM 2 3 34 8 2 3 34 8
CRA 11 12 14 3 11 12 14 3

Overall Diseases 13,506 13,665 7,225 3,937 8,584 18,587 5,478 5,684
Rare Diseases 207 180 190 70 173 214 180 80
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Table 18. Results of Counterfactual Analyses for MDJ (6% Cut-off)

Disease MDJ-not-KAA MDJ-KAA
name a b c d a b c d
SEP 935 723 105 62 425 1,233 57 110
ARF 1,228 969 95 35 605 1,592 56 74
CHF 1,238 1,315 65 39 691 1,862 36 68
PNE 788 546 176 89 355 979 101 164
FED 504 600 1,056 757 504 600 1,056 757
LD 407 430 108 37 168 669 53 92

HCSH 305 418 512 244 305 418 512 244
DA 1,070 993 182 109 512 1,551 100 191
MD 196 202 359 171 80 318 167 363
EH 1,239 1,288 225 164 866 1,661 162 227

CAH 802 927 440 215 481 1,248 232 423
DWC 787 749 73 43 371 1,165 34 82
DLM 531 676 586 317 531 676 586 317
DMC 382 338 159 60 382 338 159 60
CD 951 1,180 385 214 475 1,656 187 412

NSD 558 437 341 135 225 770 174 302
HVD 406 435 303 139 204 637 133 309
ED 266 355 488 281 266 355 488 281
HD 15 9 4 2 15 9 4 2
RF 368 476 811 529 143 701 360 980

MM 15 9 11 4 6 18 7 8
CKD 326 440 564 229 157 609 309 484
SLE 36 34 8 6 15 55 5 9

NECS 18 13 58 20 18 13 58 20
CIBD 28 44 29 10 20 52 25 14
MOS 34 26 18 7 34 26 18 7
MS 29 15 6 2 24 20 5 3

CNS 19 15 8 8 19 15 8 8
LYM 2 3 34 8 2 3 34 8
CRA 11 12 14 3 11 12 14 3

Overall Diseases 13,494 13,677 7,223 3,939 7,910 19,261 5,140 6,022
Rare Diseases 207 180 190 70 164 223 178 82
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