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Abstract
Plant fiber reinforced hybrid polymer composites have had broad applications recently
because of their lower cost advantages, lower weight, and biodegradable nature. The
present work studies the influence of reinforcing giant reed fiber concentration in
polyethylene terephthalate (PET) polymer for their physical, mechanical, and thermal
characteristics and determines the optimum loading of giant reed fiber using an artificial
neural network (ANN) scheme. Giant reed fiber reinforced PET matrix laminates were
manufactured from compression molding with different fiber loadings such as 5 wt.%,
10 wt.%, and 20 wt.%. The mechanical characteristics such as tensile and flexural
strength and the laminate’s tensile and flexural modulus were appraised and examined.
The maximum value of tensile strength, flexural strength, tensile modulus, and flexural
modulus were 5.4 MPa, 26 MPa, 8343 MPa, and 6300 MPa, respectively, for PET2
(10 wt.% of giant reed fiber in PET polymer) composite. Fiber pullout, gaps, and fracture
behavior were examined from a scanning electron microscope in the microstructural
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analysis. A machine learning technique has been recommended to combine artificial
intelligence while designing giant reed fiber reinforced polymeric laminates. Using the
suggested method, an ANN model has been generated to attain the targeted giant reed
fiber concentration for PET composite while gratifying the necessary targeted char-
acteristics. The developed method is very effective and decreases the effort and time of
material characterization for huge specimens. It will support the researchers in de-
signing their forthcoming test efficiently.
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Introduction

Plant fiber reinforced laminates have been broadly investigated because of their positive
environmental effect and particular characteristics. Using vegetable-based fibers in syn-
thetic fabrics such as Kevlar, carbon, or glass exhibits many benefits like reduced energy
consumption, safe handling, highly abundant, low-cost processing, and manufacturing.1–5

Many scientists recommended utilizing less commercial plant fibers like ferula, giant reed,
sansevieria, and artichoke as reinforcement material to the polymer composites.6–8 The
novel fibers separated from the giant reed leaf (Arundo donax L) are examined as a possible
reinforcement to the polymer laminates. The reed fibers were applied as a building material
in different Mediterranean nations. In the south region of Alicante, it was involved in all
construction and building applications up to the inception of the 20th century, primarily
producing as floor and roof. It was promoted to be utilized in short isolated houses and farm
construction until the 1960s.9 The giant reed fiber is a chronic rhizomatous grass, broadly
dispersed throughout the world, from the temperate zones of Europe to the eastern countries
like India, Japan, and China, because it can be easily modified in different climatic zones.
However, a possibly high-yielding non-food plant is applied to generate paper pulp and
energy.10 Also, the giant reed fiber expands naturally and is vast, and gratitude to its higher
growth rate presents nosy components that clearance outcome to be complex. It was
presently studied for the fabrication of chipboard panels’ alternate material to the wood-
based composites11 and utilized as reinforcement to thermoplastic12 and thermoset13

polymer composites which can substitute in sand concrete mixtures.14 Arundo donax L.
has exhibited the considerable potential to be applied as reinforcement in polymer lami-
nates. Recently, these fibers can also be involved in the generation of biomass, biogas,
furniture, papers, forage feedstock, construction, building materials, etc. The utilization of
these unwanted offers a combined value to the usage of renewable materials as a procedure
for regulating these breeds could be defined as a complete utilization of the wastes created in
these operations.

As established, plant fibers can be applied as reinforcement material to polymer
composites, have attained interest, maturing to their particular characteristics, recyclability,
benefits for health, and cost. Because of the reasons mentioned above, plant fibers were
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applied as reinforcement to composites for different engineering applications.15–20 In
general, Yan et al.21 examined the flexural characteristics (four and three-point bend) of coir
fiber and concrete incorporated concrete beams strengthened from flax fabric-based plastics.
The experimental outcomes exhibited that the fracture energy, flexural strength, peak load,
and deflection of neat concrete and coir incorporated concrete improved with incrementing
repression flax layers. Yan and Chow22 investigated the lateral crushing characteristics of
empty and polyurethane-foam reinforced flax fabric included epoxy laminate tubes as
formulation of foam filler, tube diameter, and thickness of tube.23While comparing with the
existing tubes, flax/epoxy tubes can be employed as a better substitution to glass/carbon
composite tubes and aluminum tubes as an energy absorber.

Polyethylene terephthalate, generally termed polyethylene terephthalate (PET), is
produced from ethylene glycol and terephthalic acid and possesses a long chain network.
It exhibits both semi-crystalline and amorphous behavior.24,25 The PET is effectively
applied from the different packaging industries, such as containers and bottles for food
and other commercial products. Recently, PET has begun to utilize extruded articles and
injection-molded, mainly for reinforcement with synthetic fabrics that cannot deteriorate
outside climatic conditions. Hence, incrementing attention has been targeted on recycling
polymer wastes, specifically PET, for these different applications that avert environmental
pollution.25 The importance of recycling indeed is not only for economic but also for
ecological principles. Hence, other techniques for the recycling of polymer-based waste
components have been developed. The recycling preference for PETcan be classified into
three types: chemical recycling, energy recovery, and mechanical recycling.26,27 For
economic reasons, mechanical recycling in PET material has become more essential than
the chemical recycling technique.

Similarly, the isolation of PET from polymer waste flow is very time-consuming and
expensive.28 Huq et al.29 manufactured and investigated the mechanical characteristics of
jute incorporated PET laminates and observed tensile strength of 58 MPa. It is observed
that most of the investigations have been performed on thermosetting plastics as a matrix
to examine specific characteristics while producing composite laminate. Using the flat-press
technique, Rahman et al. investigated composite laminate manufacturing from recycled
polyethylene terephthalate and wood sawdust filler under different proportions. It was
observed that the modulus of elasticity and rigidity were attained to the highest for the
manufactured laminates, where the wood filler dust concentration was 40%. Nayak and
Khuntia30 fabricated by reinforcing Moringa oleifera fruit fibers with PET polymer, and
their mechanical, thermal, and morphological characteristics were studied. It was examined
that the composites manufactured from 20 wt.% of fiber exhibits higher mechanical and
thermal characteristics when compared with other combinations of composites. This type of
giant fiber reinforced PET polymer composite can be applied in construction and building
materials, storage equipment, structural parts of automobiles, marine, and food packing
applications. The primary issues of these PET polymer composites possess phase separation
and weaker adhesion interfaces. These constituents are immiscible, which tend to have high
interfacial tension with bad chemical and physical characteristics.

Artificial Neural Network (ANN) is a kind of mathematical modeling favorable for
effectively examining the interaction between huge sets of outputs and inputs with broad
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utilization in processing the material.31 Artificial Neural Network has exhibited a rigid
scheme for modeling nonlinear structures for many years, specifically chemically or-
ganized.32 The most coveted advantage of ANN is its capability to model multidi-
mensional, nonlinear, and complex formulations without assuming anything about the
behavior of the relationship.33,34 It supports raising understanding of highly uncertain
schemes and aiding in the possible prediction of their future outcomes by producing a
consistent mechanism in materials science research. It has been applied in different
research sectors, including material structure, process modeling, optimization, and
regression.35,36 Artificial Neural Network is efficient in the characteristic-structure ex-
amination of plastics depend on the limited quantity of measurement outcomes.37 An
intelligent computational scheme’s commitment supports the reduction of custom ex-
perimental characteristics in new plastic advancement.38 This procedure is employed to
determine the time-exhausting issue that usually attains using recommending optimum
filler constituents to estimate polymer laminates’ best physical and mechanical char-
acteristics. Artificial Neural Network prediction method is an average of decreasing huge
scale laboratory quantification. The procedures of ANN have their source from the
performances of the human nervous schemes. It requires information like the human brain
in a learning system and stocks this data using the synaptic weight interneuron network.
The ANN scheme is classified into three dimensions: output, hidden, and input layers.39

Artificial Neural Network consists of the nodes (neurons) arranged in layers, weighted
networks between the activation function and nodes.32 Artificial Neural Network has been
applied to conclude in fabricating techniques emerging material characteristics vis input
characteristics of operational factors and material constituents. This technique has been
applied in different composites to acknowledge laminate-related issues like inter-
relationship between parameters in a fabricating technique to the life cycle forecast of
the laminate.40 The ANN has been affirmed by different investigations as a beneficial
mathematical formulation in plastic-based laminate. Bayraktar et al.41 created the three-
dimensional printed plastic components and optimized the mechanical characteristics
using the ANNs model. The specimen was fabricated using polylactic acid. The test
performed mainly depended on raster arrangement orientation, values of thickness, and
ranged melt temperature. The best-operating formulation has R squared values of
0.999,997 and 0.999,199 for training and testing, respectively, with a cross raster scheme.
The outcome evident the effectiveness of ANN formulation in estimating the optimum
weight percentage of the various Poly Vinyl Chloride (PVC) laminate components to
attain the acquired laminate characteristic. The ANN modeling and experimental process
were also examined in Vineela et al.40 on the tensile strength of special fiber laminate
composed of epoxy polymer, carbon, and glass fabrics. The volume proportion of the
precise carbon fibers is the input parameter, and six neurons are applied in the hidden layer
and the outputs as tensile strength. Two data sets for testing, two for validation, and four
data sets were applied as input parameters in this context. The training set has overall R
and correlation coefficient values of 0.49 and 0.49, respectively. The non-availability of
sufficient information is important for the broad discrepancy in both values of R. Khanam
et al.42 investigated the thermal and mechanical characteristics of Linear low-density
polyethylene nanocomposites reinforced with 1–10 wt.% of graphene nanoparticles using
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ANN along with prediction and optimization. The processing was carried out from the
screw extrusion process of varying speed. The optimization of mechanical and thermal
characteristics was performed under different applied procedure cases via ANN. The
outcomes of the ANN further confirm as a method to determine the material characteristics
before manufacturing to save effort, time, and money. Therefore, it can be examined that
ANN was a beneficial tool for modeling the influence of certain crucial materials factors on
the characteristics of polymer laminate, most specifically with a sufficient quantity of
practical information. The back-reproduction neural network with a 3-5-1 structure was
applied to determine abrasive wear characteristics of graphite-reinforced and unreinforced
carbon fabric epoxy laminate under different testing cases. The LM (Levenberg Marquardt)
confirms exceptional among the different network-operating methods established. A trained
neural network and a well-predicted LM training program were established to forecast the
wear rate as a formulation of sliding distance, normal load, filler concentration.43 The
predicted information is completely persistent when compared with the experimental
outcomes. Prasad et al.44 forecasted coconut fiber laminate’s three-point flexural, tensile,
andmicrohardness test characteristics using ANN. The forecasted quantities were examined
to contest the experimental results in their early investigation.

Many investigations have been observed on the forecast of the mechanical charac-
teristics of nanocomposites using the factorial-based, genetic Algorithm, Taguchi, and
response surface methodology models.39 Furthermore, the utilization of the ANN
forecasting method for Giant Reed fiber PET polymer composite has not been examined
in any published literature. While comparing the other forecasting methods, ANN can
investigate the hidden connection among the information without demanding any shield
on the input parameters. The back reproduction method of the ANN supports reducing the
forecasting error. Thus, the model can be enhanced using the iteration process. It also
apprehends the complex and nonlinear connection between the input factors and changes
it into the stated output. This study will aid the fabrication companies in utilizing the ANN
methods to forecast material characteristics preceding laminate fabrication and ad-
vancement. It delivers a cost-efficient, reliable decision-making, and fast tool for the
development of nanocomposites. It supports to preclude the complex problems associated
in experimental decision to describe the interaction of consolidation of factors on the
mechanical and thermal characteristics of giant reed fiber reinforced PET laminate
products after the fabrication. In contrast, PET thermoplastics have various benefits like
high-cost performance ratio, higher resistance to fatigue, lower processing temperature, and
good processability compared with thermosets. In addition, the capability to prevent chemical
attacks and provide consequent decrements in smoke, toxicity, and flammability performance;
because of the combined benefits of both plant fibers as reinforcement material and ther-
moplastic as a matrix, their laminates determine broad utilization in different sectors con-
sisting of different types of reusable containers, plastic components, stationary components,
textiles, laboratory equipment, automotive parts, and packaging materials. Considering the
principles mentioned earlier, a method has been developed for the polymer composite by
incorporating giant reed fibers in the PETmatrix. The reasonmay be assigned to a lower price
and higher performance and applied as a sheet, fiber, and packaging matter with good
electrical insulation, hardness, rigidity, solvent, and abrasion resistance.45,46 The present
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investigation aims to interpret the usefulness of low-environmental impact and bio-based
laminates incorporatedwith fibers separated from the leaf of ArundoDonax L. The addition of
these fibers is convenient to enhance the mechanical properties and decrease the cost of the
fabricating material because it is readily abundant throughout the world. A scanning electron
microscope (SEM) observed the morphology of interfacial bonding between the PET matrix
and Giant reed fiber kept from an SEM image.

Materials and methods

Extraction of giant reed fiber

The Arundo donax L (giant reed fiber) contains culm that grows till 6 m, where the
leaves are placed in every internode of 10–30 cm space, and every culm hoists up to
25 leaves. However, every leaf can attain 80 cm and 7 cm of length and width, re-
spectively.47 In this investigation, leaves ranging from 22 to 24 cm were isolated from
the culms promptly after gathering the new species from a plantation in Presidency
University, Banglore, Karnataka, India. Then, reed fibers (density of single giant reed
fiber as 693.25 kg/m3) of length between 18 and 22 cm with a diameter of 2.5 mm were
separated from the leaf by mechanical carding machine from conventional combing
technique with a metal teeth cross-section brush. The SEM image of extracted giant reed
fiber is shown in Figure 1. The collected fibers were then dried in a heating furnace at
105°C for 5 h to reduce the internal moisture content. The giant reed fiber was utilized
without any chemical surface modification and reinforced in its native form. For this
condition, the fiber diameters extracted from the leaf of giant reed fiber were evaluated
from optical examination with the help of polarized optical microscope model DP72 at
10 different positions and the single thread. The possible cross-sectional area of every
fiber was then estimated by assigning a circular cross-section and, as observed from the
literature .48,49

Fabrication of giant reed fiber/PET composites

Non-woven networks of PET (tensile strength of 35MPa, melt flow index of 3.3 g/10 min,
and density of 0.9 g/cm3) were applied as a matrix of the polymer composites. The PET
was procured from Indian Oil Corporation Limited, Bangalore, Karnataka, India. Four
types of PET laminates were fabricated by varying the fiber concentration as 5, 10, and
20 wt.%, and the length of randomly oriented fibers was between 10 and 12 cm. Alu-
minum foil has been used on the top and bottom of the die to avoid sticking on the
compression mold. Three layers of PET web and two giant reed fibers (layers have been
stacked together, as presented in Figure 2.

Composite boards were fabricated by compression molding process; extracted carded
fibers were impregnated with the PET matrix in a mold possessing dimensions of 300 ×
300 × 3 mm with a pressure of 13.79 MPa and temperature of 180°C for 2 min. After the
process, cold water of 20°C was passed into the compression mold to cool, and laminate
was taken out. Later, a power hack saw machine would be samples of tensile, flexural,
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water absorption, Vickers hardness, thermal conductivity, and flame resistance charac-
teristics. The fabricated composites can be denoted as PET, PET1, PET2, and PET3 for
pure PET, reinforced 5, 10, and 20 wt.% of giant reed fiber.

Composite characterization

Physical properties. According to ASTMD570 standard, a water absorption experiment was
performed with a 76 × 26 mm sample size. The samples were examined by the process of

Figure 1. Scanning electron microscope microstructure of giant reed fiber.

Figure 2. Fabrication of giant reed fiber-PET biocomposite.
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4 plus 24 h of soaking. Fiver samples of every laminate were measured at controlled room
temperature by regulating the temperature of 24 ± 2°C with 60% relative humidity.

The micro Vickers hardness test measures the resistance or hardness of material to
penetrate when little portions in a laminate specimen are examined. It can also
offer detailed and accurate data about the surface characteristics of materials with a refined
microstructure. The test was carried out at room temperature (24 ± 2°C) according to
the ASTM D785 standard. The experiment was performed by setting the investigated
specimen under the diamond indenter of the digital micro Vickers hardness tester with a
resolution of 0.01 μm. Then, a force was given to the specimen using the indenter. The
experiments were repeated 20 times, and an average value was calculated.

Mechanical properties. The tensile experiment was conducted according to ASTM D 638-
14 standard in Universal Testing Machine, Instron, equipped with a 1 kN load cell with a
50 mm/min crosshead speed. The fabricated composite sample dimensions for the tensile
test were 165 mm (length) × 19 mm (wide). The flexural sample of 203 mm (Length) ×
76 mm (width) was carried and experimented with following ASTM D 790-15 standard
with a 10 mm/min crosshead speed. The test was performed under a controlled room
temperature of 24 ± 2°C and 55% of relative humidity. For tensile and flexural strength,
20 specimens have experimented with every case, and the average is reported. The
experimented tensile and flexural samples are shown in Figure 3(a) and (b), respectively.

Morphological properties. The fabricated giant reed fiber–PET composites’ surface mor-
phology and the flexural fracture were examined using a high-resolution Hitachi SU
3500 scanning electron microscope with an accelerating voltage of 15 kV. The samples
were coated with gold–palladium and placed on the aluminum holder with carbon tape.

Thermal properties. The thermal conductivity of the specimens was determined using
EKO thermal conductometer according to JS1412-2 standard. The specimen dimensions
as 200 mm × 200 mmwere experimented with, and the mean quantity was recorded under
room temperature.

Figure 3. Experimented giant reed fiber–PET composite (a) tensile and (b) flexural.
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The UL-94 vertical burning experiment was evaluated as per the ASTMD3801 standard
from burning equipment. The sample’s dimension for this test was 125 mm × 13 mm s
1.6 mm, and the sample was placed vertically above the burning equipment and measured
the time to extinguish reported. Also, any dripping of the sample was examined. Five
samples were performed for every condition, and flammability ratings were ascribed
depending on the period of self-extinguishing the flame. The various terminologies ob-
served for specimen may not burn for more than 10 s, 30 s, and even more than that with
some ashes as V0, V1, and V2, respectively.

The thermogravimetric analysis of pure PET, PET1, PET2, and PET3 composites
specimen was performed with the TG 4000 equipment. During the experiment, tem-
perature was ranged between 35 and 600°C with a heating rate of 15 °C/min under a
nitrogen atmosphere.

Artificial neural network

Problem statement

Giant reed fiber is acknowledged as the filler to enhance the mechanical characteristics
of polyethylene terephthalate composites. This material will be applied in automobile
applications, especially for the crumple energy absorber equipment.50 The material
scientists must attain a combination of mechanical characteristics that will be adequate for
the craved utilization. Conventionally, this method is adept by performing many ex-
periments of the random samples. The product managers try to determine the proper filler
concentration by estimating the physical, mechanical, and thermal characteristics like
water absorption, flexural strength, modulus, tensile strength, modulus, Vickers hardness,
and thermal conductivity for certain specimen giant reed fiber/PET composite. This
process is complex and expensive. The primary issue is the non-linearity of the rela-
tionship between the examined physical, mechanical, and thermal characteristics. The
present work exhibited here aims to promote an ANN model which can determine the
optimum concentration of giant reed fiber in the PET laminate while considering the given
physical, mechanical and thermal characteristics. The model is trained depending on the
random experimental information of the giant reed fiber concentration PET laminate to
generate a relationship between the physical, mechanical, and thermal characteristics.51,52

This will permit the selectors to do the inventive product design by eradicating the manual
experimentation for all the available ranges. The generated model is helpful to determine
the optimum filler concentration depending on the earlier investigation. The scientists can
formulate their characterization method intelligently for approving the targeted char-
acteristics as per the requirement of the product.

Configuration of ANN

Essential procedure for the development of ANN model. It is proved that attaining the
targeted mechanical characteristics cited will not be a direct method by inspecting
the information. The issue for the regression is the shortage of information, this
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classical optimization or regression techniques will not be applicable for this
forecasting. At the same time, the ANN model has enough hidden layers that contain
neurons that can be trained from proper learning methods like the backpropagation
technique to achieve the activation and desired weight formulations that are the
primary components for the model. The primary issue of constructing this model
will be determining the appropriate structure like batch size, epoch, number of
hidden layers, etc., of the generated model. In this type of machine learning,
generally, the quantities of the factors such as bias, weights, and nodes are studied
from the backpropagation and forward procedure.

Furthermore, there are undoubtedly other factors whose quantity is applied to regulate
the learning method termed a hyper factor. It is essential to converge these nervous factors
so that the generated ANN model can optimally clarify the issues from machine learning
efficiently. The hyper factor tuning technique like a grid inspection in MATLAB can be
applied to determine an adequate structure. Figure 4 exhibits the strategic procedures to
generate the proposed ANN models and their performance experiments. The methods
used to construct the appropriate ANN model for the designated work of this present
investigation are briefed in the upcoming sections. To generate the ANNmodel depending
on the collected experimental and material properties information, the three processes are
observed: pre-processing of data, constructing and training the prediction models, and
verifying the model.

Pre-processing of information. Initially, the collected information must be pre-processed, and
before that, it should be free from deviation like errors, outliers, andmissing data information.
Then, the characteristic separation is essential to analyze the independent parameters for the
input models. In this condition, seven different characteristics (water absorption, tensile
strength, tensile modulus, flexural strength, flexural modulus, Vickers hardness, and thermal
conductivity) were established to forecast the dependent, giant reed parameters fiber con-
centration in the PET matrix. Hence, there will be seven input nodes and one output node in
the input and output layers, respectively, as observed in Figure 5. After the pre-processing and
selecting characteristics, separating the information set into the training and experiment is
needed. In this condition, the fitting app (from nnstart) in MATLAB is applied for separating
the information. The subdivision of training and testing is used to construct the model and
utilize the model on unknown information respectively to determine the model’s
performance.

Constructing and training the forecasting models. The ANN model is developed from three
different layers as input, output, and hidden, and the ANN model’s layered scheme is
presented in Figure 5. The hidden layer contains two or more layers for its efficient
utilization, and every layer includes many neural components. The bottom portion of the
Figure 5 exhibits one neural feature and the interlink between the input ynj and output k

nþ1
j

factors. The model is constructed from the Keras-dense layer of the Tensor flow. The
dense establishes the process
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Output ¼ activation functionðdotðinput, kernelÞÞ þ bias (1)

Figure 4. Procedure for Artificial Neural Network model development and prediction.
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knþ1
j ¼ α

 Xn
j¼1

vmij y
m
i

!
þ bij (2)

Figure 5. The layered scheme of Artificial Neural Network for predicting the optimal condition.
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where input shows the input information, activation is the component-wise activation
formulation crossed as the activation assignment, a kernel is weights matrix produced
from the layer, dot exhibits multiplication of all input, and their corresponding weight
factors and bias is obtained from the layer which only is applicable for actual bias. The
Levenberg–Marquardt and Bayesian Regularization methods of MATLAB were tested,
and mean squared error was applied as a loss function during the training process. The
best regression and iteration were examined depend on the mean squared errors values.
The mean squared error has been calculated from equation (3).

MSE ¼ 1

N

XN
i¼1

ðy ¼ ŷÞ2 (3)

where y and y^are measured and predicted output of the test or training data information,
the drop out technique was used during the training period to prevent overfitting controls.
Drop-out control technique avoids the overfitting by inhibiting co-transformation amidst
hidden nodes of the feed-forward neural network on every training condition .53,54 The
method is performed by dropping sure of the nodes in neural network layers during the
training stage. The selection of that node to drop is arbitrary, and nodes are generally
dropped with 0.5 probability. When the neural network is trained with the drop-out
method, nodes are available in layers only with a designated possibility which are also
exhibited during the process.54

Validation of model. The trained ANN model should be checked with the validation from
the experimental information that was initially extracted. In this condition, random 15%
of data sets for testing and validation, and the remaining 70% is applied for training. It is
observed that because of the shortage of data, the k-fold cross-verification technique was
used for dividing the collected information into three sets, where a specific random
selection for the combination of validation and train was utilized many times. The
performance estimated observed from the kfold cross-verification was the mean of the
values calculated from the loop. This method does not misuse lots of information that is a
dominant benefit in issues like a reverse solution, where the quantity of specimen is
comparably less. The generated ANN model to obtain the optimal amount of giant reed
fiber in the forecasting period depends on the targeted physical, mechanical, and thermal
characteristics. The information that includes targeted characteristics was provided into
the model to observe whether it can determine the optimum content of the fabricated
composite. The generated ANN model was applied many times to verify the predicted
optimum giant reed fiber concentration’s reliability, robustness, accuracy, and precision.
The estimated standard deviation exhibited how broadly quantities are distributed from
the mean portion.

Statistical analysis

The statistical analysis has been carried out with IBM SPSS 2018 software to determine
the significant difference between the mean characteristics of the fabricated giant reed
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fiber PETcomposites. A significant difference can be observed under the confidence level
of 95%, with a probability value that should be less than 0.05.

Results and discussion

Effect on water absorption characteristics

Figure 6(a) exhibited the water absorption characteristics of the three different types of
fabricated giant reed fiber PET composites. The graph recommends that water absorption
pursues Fick’s law of diffusion that forecasts that the quantity of absorbed water improves
straightly with the square root of time and finally maintains attaining equilibrium.55 Fick’s
law is generally applied to forecast the evolution of water absorption over a period
because of its integrity and capability to explain the diffusion of water content in the
laminate.56 It is observed from Figure 6(b) that water absorption capacity incremented
with the soaking time from 4 to 24 h. The trend affirms that the incrementing water
absorption characteristics with fiber loading showed the PET3 composite highest water
absorption of 25% after 4 h. The PET2 composites showed better water absorption
capacity when compared with PET1 because of better interfacial bonding within the PET
and giant reed fiber. After 24 h, the outcomes exhibit that giant reed fiber–PET composite
signifies lower water absorption with 22%, 24%, and 38% for PET2, followed by
PET1 and PET3 composites, respectively. The giant reed fiber–PET composites’ higher
water absorption capacity indicates the micro-channel production, which assigns to the
higher water absorption and offers water capability to transform through pores on the fiber
surface.57 This depends on the previous investigation of untreated outcomes for oil palm-
based composites. It was examined that there was an identical tendency in water
absorption capacity due to natural fiber’s hydrophilic behavior. To reduce the water
absorption capacity, the sugarcane bagasse can be applied. Because of the wettability
region, the compatible feature of sugarcane fiber enhances the fiber capillary principle for
carrying the void an irregularity in the interface between giant reed fiber and PET matrix.
It was examined that the loading of sugarcane fiber can compact the structure and reduce
porosity and voids on the surface area of the laminates.58 In this context, hybridization of
fiber helps in reducing the moisture absorption in the laminate due to the voids replete
during the manufacturing of PET laminate. As per Munoz et al., a large water absorption
capacity was influenced by the higher exposed surface portion and higher gap of fiber
resistance.59

Effect on Vickers hardness

Micro Vickers hardness is the characteristic of a material to prevent indentation, abrasion,
and penetration. The calculated micro Vickers hardness quantities of the investigated
specimens were given in Figure 6(b). From these outcomes, the specimen PET2 exhibits
the highest hardness value among all the fabricated specimens. The micro Vickers
hardness of the PET2 is 15.79% greater than the PET3 and PET1 composites. The
addition of 10 wt.% of giant reed fiber in the PET polymer improves the PET polymer’s

782S Journal of Industrial Textiles 51(1S)



cross-linking density, limiting the movement of the polymeric network and concluded in
incremented hardness value.60,61

Further addition of giant reed fiber up to 20 wt.% decreases micro Vickers hardness
since giant reed fiber reinforcement at an adequately higher concentration obstructs the
cross-linking of a PET polymeric network, as was observed from other investigators.62–64

Possibly, the reduction in the micro Vickers hardness can be assigned to the non-uniformity
of giant reed fiber reinforcement in the laminates and the gap production during the
specimen production of the laminates with a higher concentration of giant reed fiber.65,66

Effect on mechanical properties

The effect of giant reed fiber concentration on tensile and flexural characteristics of PET
composites was evaluated, and the stress–strain graphs are presented in Figure 7(a) and
(c), respectively. The tensile and flexural strength of the laminates was improved by
incrementing the concentration of giant reed fiber. The higher tensile and flexural strength
at 10 wt.% of giant reed fiber was 5.4 MPa and 26 MPa, respectively. The tensile and
flexural modulus of the laminates also followed the same trend as tensile and flexural
strength. The laminates’ highest tensile and flexural modulus were 8343 and 6300 MPa,
respectively, as shown in Figure 7(b) and (d). The highest values of mechanical char-
acteristics exhibited by 10 wt.% of fiber loading laminate may be explained in terms of
homogeneity and fibers’ orientation within the PET matrix. In this condition, PET fibers
attain the most significant mix uniformly and orientation within the PET polymer. When
the force is applied, stress is homogeneously dispersed among the giant reed fiber. Under
lower fiber concentration, insufficient giant reed fiber shares lower load transfer capability
among the matrix. As an outcome, accumulation of strength happens at various laminate
points, and strains are also observed highly in the PET matrix.67,68 This shares bad
mechanical characteristics of the laminates under a lower concentration of giant reed fiber.
Agglomeration occurred within the PET matrix under a higher level of giant reed fiber,
creating non-uniform stress transfer capability. Besides, various giant reed fiber ends

Figure 6. Physical properties of giant reed fiber–PET biocomposite (a) water absorption
characteristics, (b) Water absorption, and Vickers Hardness.
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develop micro-crack production at the interface. As an outcome, the laminate’s modulus
and strength were reduced again.69,70 This study shows that the giant reed fiber can be
applied as a reinforcement to the PET matrix under lower loading conditions for the
enhancement in the mechanical properties of the composites.

Figure 8(a)–(c) presents the SEMmicrographs of flexural fracture of the sample PET1,
PET2, and PET3, respectively. Figure 8(a) exhibited that the surface of 5 wt.% of giant reed
fiber composites showing more holes, void, smoother texture, and fiber breakage from the
matrix when the force is applied, which leads to poor interfacial bonding within the PETand
giant reed fiber. From this poor interfacial bonding, the composite possesses lower tensile
and flexural characteristics. The PET2 laminate showed a surface fracture and fiber pullout,
which depicts the better interfacial adhesion between the giant reed fiber and PET matrix
(Figure 8 (b)), which improved the flexural and tensile strength of the composite.
Figure 8(c) depicts the fiber pullout, gaps, weaker interfacial adhesion bonding between the
giant reed fiber and PET matrix, which reduced the tensile and flexural characteristics.71

Effect on thermal characteristics

Thermal conductivity. The thermal conductivity of PET laminates under different fiber
concentrations of 5 wt.%, 10 wt.%, and 20 wt.% is presented in Figure 9. The

Figure 7. Mechanical properties of giant reed fiber–PET biocomposite (a) Tensile stress–strain,
(b) Tensile properties, (c) Flexural stress-strain, and (d) Flexural properties.
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PET3 composite exhibits a thermal conductivity of 0.139 W/mK, similar to the quantities
examined by other investigators.72,73 The thermal conductivity of PET laminates improved
with the loading of 10 wt.% of giant reed fiber in the PET polymer. Under the maximum
concentration of 20 wt.% of giant reed fiber, the thermal conductivity attained 0.199W/mK
lower than 4.78% of the PET2 composite. The thermal conductivity achieved 0.209 W/mK
at 10 wt.% of giant reed fiber improved by 50.36% compared with PET3 composite. This
can be described that giant reed fiber with a greater aspect ratio may produce well-
established networks and subsequent increment of interfacial bonding between the giant
reed fiber in the polymers.74,75 In this context, the discontinuity of giant reed fiber networks
in the perpendicular path tends to slightly enhance thermal conductivity as incrementing the
fiber concentration up to 10 wt.%.76

Flame characteristics. Table 1 presents the outcome of the UL-94 experiment of giant reed
fiber reinforced PETcomposites. The samples PET2 and PET1 had no rating in the UL-94
investigation because of the wicking action of giant reed fiber, which could increase the
burning,77 but there was no dripping. It can be observed that dripping for PET3 has a
different flame spread rate produced during the burning process, and it depicts under
V2 rating.

Thermogravimetric Analysis. From Figure 10, it can be examined that all the fabricated
laminates consist of giant reed fiber initiate decomposition at 55°C temperature because of
evaporation of moisture content from the reed fibers.30 At the same time, the pure PET
decomposes around 251°C as it does not possess any reinforcements. The second stage of
decomposition is assigned to loss of weight around the temperature of 343°C, 351°C, and
347°C for PET1, PET2, and PET3 composites respectively, which is comparably lower
than the pure PET (498°C).78 Furthermore, the degradation of all fabricated laminates has
occurred after 560°C. The reason may be assigned to incorporating fibers that improve the
laminates’ thermal stability.30 It is observed that PET2 laminates present higher thermal
stability when compared with other manufactured PET composites and lastly deteriorate
at 630°C, and there is no degradation from this temperature.

Figure 8. Flexural fracture of giant reed fiber–PET biocomposite (a) PET1, (b) PET2, and (c) PET3.
PET: polyethylene terephthalate.
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Artificial neural network results

Forecasting of the targeted optimal giant reed fiber content. The generated ANN model
determined the optimal giant reed fiber concentration in the PET matrix, depending on
targeted characteristics. The model could construct a sturdy connection between the
physical, mechanical, and thermal characteristics and the quantity of giant reed fiber
concentration in the studied laminate. It is observed that traditional simulations could not
offer fortunate outcomes because of the significantly nonlinear grouping among the
independent parameters. The network search hyper factor adjusting technique was applied
to locate the optimal hidden layers, epoch, and neuron in this condition. During factor
adjustment, it was examined that an epoch (15,000) and huge neurons (350 in every
hidden layer) were essential to improve the model efficiency. The model’s sturdiness was
calculated depending on validation and training loss formulations from mean square error
values. The epoch and huge neurons signify the connection amidst the independent

Figure 9. Thermal conductivity of giant reed fiber–PET biocomposites.

Table 1. Flame resistance characteristics of giant reed fiber–PET composites.

Sample name Time to self-extinguish after ignition (s) Observed dripping UL-94 rating

PET1 <250 NO V-1
PET2 <250 NO V-1
PET3 <250 YES V-2

PET: polyethylene terephthalate.
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factors; in this condition, the dependent factor’s physical, mechanical, and thermal
characteristics were varied. Hence, the optimal giant reed fiber concentration is based on
physical, mechanical, and thermal characteristics because of data points. Frequently, huge
neurons with lower information may tend to under or over-fitting the model. To protect
these positions, the drop-out technique was applied with the dense layer during the
training, which ranged the active neurons in the input to eliminate undesirable biases.

Figure 10. Thermogravimetric analysis of giant reed fiber–PET composites.

Table 2. Optimum formulation of the ANN model.

Factors ANN model for giant reed fiber–PET composites

No. of neurons in the input layer 9
No. of hidden layers 2
No. of the output neurons 2
Training data 70%
Validation data 15%
Testing data 15%
No. of cross-validation 6
No. of neurons in each hidden layer 350
No. of epochs 15,000
Activation function TANSIG
Programming interface and algorithm MATLAB and Levenberg Marquardt algorithm
Loss function Mean squared error

ANN: artificial neural network; PET: polyethylene terephthalate.
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Furthermore, the model was executed slightly five times for every forecast to verify the
model efficiency. Moreover, the targeted physical, mechanical, and thermal character-
istics were studied to confirm if the model is established (because of overfitting) to any

Table 3. Outcomes of confirmation experiment under the optimal condition from ANN model.

Parameters
Targeted properties under
optimal condition

Confirmation
experiment results

Tensile strength (MPa) 6.86 6.97±1.54%
Tensile modulus (MPa) 4636.72 4684.05±1.02%
Flexural strength (MPa) 17.25 17.65±2.31%
Flexural modulus (MPa) 3498.61 3515.25±3.51%
Water absorption (%) 20.03 20.45±2.08%
Thermal conductivity (W/mK) 0.14 0.15±1.25%
Vickers hardness 14.64 14.89±1.73%

ANN: artificial neural network.

Figure 11. Performance curve of Artificial Neural Network for predicting the optimal condition
for targeted properties.

788S Journal of Industrial Textiles 51(1S)



outcome. Suppose they are soft ample from the modification of the independent pa-
rameter. In Table 2, the optimal giant reed fiber concentration quantity was 12.70 wt.% to
attain the targeted characteristics. Next, all targeted characteristics were ranged ±15% to
verify the model’s achievement. It was observed that the model was capable of forecasting
the optimal giant reed fiber content accordingly. The targeted physical, mechanical, and
thermal characteristics and their respective ±15% variation quantities are provided in
Table 2 applied as the inputs for different forecasted cases.

It exhibits that the model could determine the need for giant reed fiber concentration
with higher precision using the developed connection between the investigated physical,
mechanical, and thermal characteristics. Using the generated ANN model, this forecasted
capacity can be convenient for the product managers or scientists to search for the optimal
giant reed fiber concentration in the PET matrix. It also adjusts any particular physical,
mechanical, and thermal characteristics to observe how it influences the end outcomes in
giant reed fiber concentration. This forecasted ANN model can be applied as an excellent
product design device. The engineer can select a distinct set of targeted quantities for
separate end utilizations. It can attain the perception of the laminate combination of giant
reed fiber/Pet without considering any more tests by seeing the physical, mechanical, and

Figure 12. Performance curve of Artificial Neural Network for predicting the optimal condition
for +15% of targeted properties.
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thermal characteristics are in the field of trained information. As the model was introduced
to depend on the given information, the achievement will be efficient if the input
characteristics prevail in the range of trained information. To predict the optimal quantity
outside the field, the ANNmodel requires training with the new information. It was found
that the time needed for the hyper factor adjusting and kfold cross-verification was
significant as the information was very well defined as it was incrementing the number of
epochs and neurons to observe the optimum ANN scheme. Hence, the developed ANN
model, along with their respective scheme data, was rescued to the plate from the
MATLAB script, and this freed model can be weighed with the script without functioning
the complete procedure again. This will decrease the quantity of simulation and will
provide customers the resilience for cross-platform utilizations. A confirmation test has
been conducted for the targeted properties to verify the consistency of the optimal
condition obtained from the ANN model, shown in Table 3.

Performance curves. The input factors such as giant reed fiber and PET matrix and targeted
properties like water absorption, tensile strength, tensile modulus, flexural strength,
flexural modulus, Vickers hardness, and thermal conductivity are inserted in the ANN

Figure 13. Performance curve of Artificial Neural Network for predicting the optimal condition
for �15% of targeted properties.
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model, where the optimal giant reed fiber as the output. This was constantly trained from
the LM and feed-forward with the backpropagation method. The performance curve of
targeted, �15% and +15% of targeted characteristics are presented in Figures 11–13,
respectively. The performance aspect is to assure which bias and weights are ascribed to
the buds of the connection. As mentioned earlier, the performance goal curve, which
shows the appropriateness or differently of the trained relation, is the contact when the
training line divides across the target horizontal line as presented in Figures 9–11. This
signifies that the ANN model has been effectively trained and interacted with the input
information for forecasted aspire. The procedure is iterative, and the network scheme can
be adapted till the performance goal is confronted. The amount of the mean squared error

Figure 14. Regression analysis for predicting the optimal condition for targeted properties.
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for the 255 iterations was 0.0035. The mean squared error is a network performance
formulation that examines the network’s performance as per the average squared errors.
The inconsequential quantity of the mean squared errors signifies the vast degree of
interaction among input parameters and a trend for a better optimum target. Similar results
have also been observed by other investigators.79

Regression curves. Figures 14–16 exhibits the regression curves that correlate the con-
nection’s output to the predicted targets. The procedure of network verification created the
regression curves, which are applied as support of correlation for the indicated targets and

Figure 15. Regression analysis for predicting the optimal condition for +15% of targeted
properties.

792S Journal of Industrial Textiles 51(1S)



the network output. The interaction coefficients for the three regression curves were
0.974, 0.874, and 0.991 for the targeted,�15%, and +15% of the targeted characteristics,
respectively. These quantities are near to 1, which entails advancing a better model with
predictive and correlative capacity. The regression curves exhibit a higher arrangement
between the best and information points line for the expected target and network output.
The regression curves for the validation and training demonstrate higher predictive and
correlative capacity as signified from the proximity of the formulation coefficient R up to
1 instead of the regression curve for testing. There are 120 total data sets, in that 84 data
sets for training, remaining 18 data sets for testing and validating the ANN model. From

Figure 16. Regression analysis for predicting the optimal condition for �15% of targeted
properties.
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Figures 14–16, most of the data sets are merged, which seems like few data only
presented. This suggests that the network performance enhances upon fine-adjusting
the connection using modifications and iterative training of biases and weights. The
outcomes collected from the predicted outputs and tests using ANN are given in
Table 4.

The verification of the generated network was conducted using unplanned quantities
within the variation of the input factors for the giant reed fibers and PET matrix.
Arbitrary specific amounts of the giant reed fiber and PET matrix between the inter-
pretations of the testing input factors were randomly chosen and provided as input to the
generated network. The feedback from the network in terms of physical, mechanical,
and thermal characteristics was examined to plunge within the variation of the predicted
and experimented values using the interpolation technique. This affirms that the
generated network is sufficiently trained for predictive and correlative desires. Em-
ploying the mean classification error of water absorption (0.0025), tensile strength
(0.0021), tensile modulus (0.0023), flexural strength ((0.00027), flexural modulus
(0.00022), Vickers hardness (0.00033), and thermal conductivity (0.0037). The
quantities are less and slight, indicating a higher arrangement range within the predicted

Table 4. Material properties (independent parameters) for various prediction conditions.

Parameters

Prediction conditions

+15% variation in all
targeted properties

Targeted
properties

�15% variation in all
targeted properties

Performance 1.69 × 106 5.87 × 105 9.77 × 104

R squared — — —

Training 0.975 0.877 0.993
Validation 0.973 0.882 0.991
Test 0.969 0.881 0.994
All 0.974 0.874 0.991
Optimum condition — — —

Giant reed fiber 14.61 12.7 10.13
PET 85.39 87.3 89.87
Responses — — —

Tensile strength (MPa) 7.89 6.86 5.47
Tensile modulus (MPa) 9587.68 4636.72 3941.21
Flexural strength (MPa) 29.24 17.25 14.89
Flexural modulus (MPa) 4028.71 3498.61 2976.59
Water absorption (%) 39.74 20.03 17.43
Thermal conductivity (W/mK) 0.16 0.14 0.17
Vickers hardness 20.39 14.64 11.02

PET: polyethylene terephthalate.
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and experimental values of characteristics. This also focuses on the principle that the
generated model is adequate for predictive utilization and efficiently trained. However,
the model generated for forecasting characteristics exhibits higher predictive capability
accuracy than the model for ±15% of targeted characteristics.

Impact of targeted characteristics. Table 4 follows the optimal giant reed fiber in the PET
matrix for the targeted characteristics. The other part of the column follows the modi-
fication in the optimum giant reed fiber concentration, where all the characteristics were
incremented by 15%. Later, the consecutive seven rows present the influence of mod-
ifying every characteristic by 15% greater than the initial condition. It can be examined
from Table 4 that specific particular characteristics (water absorption, tensile strength,
tensile modulus, flexural strength, flexural modulus, Vickers hardness, and thermal
conductivity) have positive influences on giant reed fiber concentration.

This detailed data can support the excellent product manager to twist the classified
characteristics for attaining more efficient laminate materials from any giant reed fiber
concentration. The recommended strategic steps of generating the ANN model for de-
termining the optimum giant reed fiber concentration can be efficiently used for other
composites if the testing quantities of the physical, mechanical, and thermal charac-
teristics are available to the product investigators. The researchers can draft their tests and
examination earlier to complete the necessary characteristics using the generated fore-
casted ANN models.

Statistical analysis

The statistical analysis was conducted with one way ANOVA method to determine the
significance level between the average results (tensile strength, tensile modulus, flexural
strength, flexural modulus, water absorption, Vickers hardness, and thermal conductivity)
of different fabricated giant reed fiber reinforced PET composite. Table 5 exhibits the
ANOVA outcomes of results. The variance has been classified into two divisions within
and between the groups. The p-value of these results observed as less than 0.05 eliminated
the null axiom (hypothesis). It achieved a statistically significant difference between the
fabricated composite laminates PET1, PET2, and PET3 under the confidence level of 95%.

Conclusion

The giant reed fiber reinforced PET laminates were manufactured successfully with the
increment of giant reed fiber loading 5, 10, and 20 weight%. It was found that incor-
porating giant reed fiber in the PET matrix enhanced the mechanical characteristics
significantly, and the highest enhancement was observed for 10 wt.% of giant reed fiber
loading. In contrast, it exhibited a reducing trend beyond that. From the flame resistance
test, the samples PET1 and PET2 had no rating in the UL-94 test due to the wicking action
of giant reed fiber, which could increase the burning sensation, and no dripping occurred.
The thermal conductivity of laminates reinforced with 10 wt.% of giant reed fiber
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improved to 0.209 W/mK and then decreased at higher loading. Based on the overall
outcome collected, the PET2 exhibited the best characteristics.

The predictive ANN model was also generated from the nnstart feed-forward
backpropagation using MATLAB software to determine optimum giant reed fiber
concentration in PET matrix composites on targeted characteristics. The hyper factor
adjusting technique was applied to search the optimal ANN scheme, and the controls
drop-out technique was used during the training period to prevent overfitting. The
generated models were fortunate to determine the desired giant reed fiber concentration
(12.70 wt.%) depending on the targeted physical, mechanical, and thermal characteristics
while employing the ambitious targets.

Moreover, the model as a device permits the user to intuitions into the effect of critical
factors on the desired fabricated composites. Also, the determination of the ANN method
in forecasting physical, mechanical, and thermal characteristics will support effective
decision-making and cost-efficient.
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