Seshadri, Harish and Verma, Kaushal (2006) A class of nonpositively curved Kähler manifolds biholomorphic to the unit ball in $C^n$. In: Comptes Rendus Mathematique, 342 (6). pp. 427-430.
PDF
A_class_of_nonpositively_curved_Kähler_manifolds_biholomorphic_to_the_unit_ball_in.pdf Restricted to Registered users only Download (80kB) | Request a copy |
Abstract
Let (M, g) be a simply connected complete Kähler manifold with nonpositive sectional curvature. Assume that g has constant negative holomorphic sectional curvature outside a compact set. We prove that M is then biholomorphic to the unit ball in $C^n$,where $dim_C\hspace{2mm}M=n$.
Item Type: | Journal Article |
---|---|
Publication: | Comptes Rendus Mathematique |
Publisher: | Elsevier SAS |
Additional Information: | Copyright of this artricle belongs to Elsevier SAS. |
Department/Centre: | Division of Physical & Mathematical Sciences > Mathematics |
Date Deposited: | 20 Nov 2007 |
Last Modified: | 19 Sep 2010 04:27 |
URI: | http://eprints.iisc.ac.in/id/eprint/7100 |
Actions (login required)
View Item |