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The symmetrized bidisc has been a rich field of holomorphic function theory and

operator theory. A certain well-known reproducing kernel Hilbert space of holomorphic

functions on the symmetrized bidisc resembles the Hardy space of the unit disc in

several aspects. This space is known as the Hardy space of the symmetrized bidisc. We

introduce the study of those operators on the Hardy space of the symmetrized bidisc

that are analogous to Toeplitz operators on the Hardy space of the unit disc. More

explicitly, we first study multiplication operators on a bigger space (an L2-space) and

then study compressions of these multiplication operators to the Hardy space of the

symmetrized bidisc and prove the following major results.

(1) Theorem I analyzes the Hardy space of the symmetrized bidisc, not just as

a Hilbert space, but as a Hilbert module over the polynomial ring and finds

three isomorphic copies of it as D2-contractive Hilbert modules.

(2) Theorem II provides an algebraic, Brown and Halmos-type characterization

of Toeplitz operators.

(3) Theorem III gives several characterizations of an analytic Toeplitz operator.

(4) Theorem IV characterizes asymptotic Toeplitz operators.

(5) Theorem V is a commutant lifting theorem.

(6) Theorem VI yields an algebraic characterization of dual Toeplitz operators.
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Toeplitz Operators on the Symmetrized Bidisc 8493

Every section from Section 2 to Section 7 contains a theorem each, the main result of

that section.

1 � and �-contractions—preliminaries

Ever since Brown and Halmos published their seminal paper [14] on Toeplitz operators,

it has been vastly studied. The book by Bottcher and Silverman [13] is a veritable

treasure. For the introduction to the theory for just the space H2(D), the survey article

by Axler [7] is excellent. State of the art research, even just in the context of the unit

disc D = {z ∈ C : |z| < 1} is still going on, see [17], [20], and [30] and there are open

problems, see [22]. Toeplitz operators have found applications in a wide variety of areas

of mathematics from algebraic geometry [28] to operator algebras [19].

In several variables, Toeplitz operators have been studied by several authors;

see [23] and the references therein. Naive attempts to generalize one variable results

quickly run into difficulties, and innovative new ideas are required.

The open symmetrized bidisc is defined as

G = {(z1 + z2, z1z2) : |z1| < 1 and |z2| < 1}.

The novelty of this domain arises from the fact that it behaves significantly

differently from even the bidisc (e.g., a realization formula for a function in the unit ball

of H∞(G) requires uncountably infinitely many “test functions”, see [6] and [11] or see

[1] for a description of the sets with the extension property). The Toeplitz operators on

this domain will highlight a few similarities and a lot of differences with the classical

situation of Brown and Halmos as well as with later endeavors on the bidisc. It will also

bring out once again the importance of the fundamental operator of a �-contraction

introduced in [9]. Let � denote the closed symmetrized bidisc � = {(z1 + z2, z1z2) : |z1| ≤
1 and|z2| ≤ 1}. The following terminology is due to Agler and Young [4].

Definition 1. Let b� be the distinguished boundary of the symmetrized bidisc, that is,

b� = {(z1 + z2, z1z2) : |z1| = |z2| = 1}.
(1) A commuting pair (R, U) is called a �-unitary if R and U are normal

operators and the joint spectrum σ(R, U) of (R, U) is contained in the

distinguished boundary of �.
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8494 T. Bhattacharyya et al.

(2) A commuting pair (T, V) acting on a Hilbert space K is called a �-isometry if

there exist a Hilbert space N containing K and a �-unitary (R, U) on N such

that K is left invariant by both R and U, and

T = R|K and V = U|K.

In other words, (R, U) is a �-unitary extension of (T, V). In block operator matrix

form,

R =
(

T ∗
0 ∗

)
and U =

(
V ∗
0 ∗

)

with respect to the decomposition N = K ⊕ K⊥.

A �-isometry (T, V) on H is said to be a pure �-isometry if V is a pure isometry,

that is, there is no nontrivial subspace of H on which V acts as a unitary operator.

It is clear from the block matrices above that for any polynomial ξ in two

variables,

ξ(R, U) =
(

ξ(T, V) ∗
0 ∗

)
.

Consequently, if ‖f ‖∞,� denotes the supremum norm of f over the compact set � for a

function holomorphic in a neighborhood of �, then for any polynomial ξ ,

‖ξ(T, V)‖ ≤ ‖ξ(R, U)‖
= r(ξ(R, U)) (because of normality)

= sup{|ξ(s, p)| : (s, p) ∈ σ(R, U)}
≤ sup{|ξ(s, p)| : (s, p) ∈ b�} (because σ(R, U) ⊆ b�)

= ‖ξ‖∞,�.

This von Neumann-type inequality will also remain true for another class of

operator pairs (S, P). Suppose H is a subspace of K that is invariant under T∗ and V∗.

On H, we consider the operators S and P that are defined by

S∗ = T∗|H and P∗ = V∗|H. (1.1)
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Toeplitz Operators on the Symmetrized Bidisc 8495

So, S and P are compressions of T and V to a co-invariant subspace. In block operator

matrix form with respect to the orthogonal decomposition K = H ⊕ (K 
 H), we have

T =
(

S 0

∗ ∗

)
and V =

(
P 0

∗ ∗

)
.

If ξ(s, p) = ∑
aijs

ipj is a polynomial, then because of the structure of the block matrices

above,

ξ(T, V) =
(

ξ(S, P) 0

∗ ∗

)
.

Thus,

‖ξ(S, P)‖ = ‖PHξ(T, V)‖ ≤ ‖ξ(T, V)‖ ≤ ‖ξ‖∞,�. (1.2)

Since � is polynomially convex and since the inequality (1.2) holds for all polynomials,

the Oka–Weil theorem implies that the same holds for all f ∈ A(�). Thus, starting with

a co-invariant subspace H of a �-isometry (T, V), we showed that the compression pair

(S, P) = PH(T, V)|H satisfies the inequality (1.2). It is a remarkable fact that the converse

is true, that is, given any commuting pair (S, P) of bounded operators on a Hilbert space

H satisfying the inequality

‖ξ(S, P)‖ ≤ ‖ξ‖∞,�

for all polynomials ξ in two variables (equivalently, for all f ∈ A(�) because of the

Oka–Weil theorem), there is a bigger Hilbert space K containing H and a �-isometry

(T, V) acting on K such that H is a joint co-invariant subspace for (T, V) (T∗H ⊂ H
and V∗H ⊂ H) and (S, P) and (T, V) satisfy (1.1). This is the Agler–Young dilation of a

�-contraction, discovered and expounded upon in [2], [3], and [4].

Definition 2. A pair of commuting bounded operators (S, P) on a Hilbert space H is

called a �-contraction if

‖ξ(S, P)‖ ≤ ‖ξ‖∞,�

for all polynomials ξ in two variables.

We saw in the paragraph preceding the definition that every �-contraction

dilates, first to a �-isometry and then to a �-unitary. Thus, the structures of these

two classes of operator pairs become important. The two following propositions are

collections of results from [4] and [9] and characterize �-unitaries and �-isometries.
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8496 T. Bhattacharyya et al.

Proposition 3. Let H be a Hilbert space and let R, U ∈ B(H) satisfy RU = UR. Then the

following are equivalent:

(1) (R, U) is a �-unitary;

(2) there exist commuting unitary operators U1 and U2 on H such that

R = U1 + U2, U = U1U2;

(3) U is unitary, R = R∗U, and r(R) ≤ 2, where r(R) is the spectral radius of R;

(4) (R, U) is a �-contraction and U is a unitary;

(5) U is a unitary and R = W + W∗U for some unitary W commuting with U.

Proposition 4. Let H be a Hilbert space and let T, V ∈ B(H) satisfy TV = VT. The

following statements are equivalent:

(1) (T, V) is a �-isometry;

(2) (T, V) is a �-contraction and V is isometry;

(3) V is an isometry , T = T∗V and r(T) ≤ 2.

Note that if (S, P) is a �-contraction, then P is a contraction. For a contraction P,

the space DP denotes the closure of the range of the defect operator DP := (I − P∗P)1/2

of P.

The discovery of the fundamental operator F of a �-contraction (S, P) in [9]

changed the subject because with the help of it, one produces the �-isometric dilation,

alluded to above, explicitly; characterizes �-contractions [9, Theorem 4.4]; constructs

a functional model [10,Theorem 4.4] and characterizes distinguished varieties in the

symmetrized bidisc; see [26]. The fundamental operator is the unique bounded operator

on DP that satisfies the equation

S − S∗P = DPFDP.

Since its discovery, it has proved to be an indispensable tool in the study of

operator theory on the symmetrized bidisc. The fundamental operator appears in this

paper in Example 15 and also in Proposition 25 while characterizing compact operators

on H2(G).

2 The Hardy Space, Boundary Values, and Toeplitz Operators

The beginning of this section warrants a discussion on Hilbert modules over polynomial

rings. A Hilbert module over the polynomial ring C[z1, z2] is a Hilbert space H that is also

a module over C[z1, z2]. If � is a domain in C2, then a Hilbert module H is said to be �-
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Toeplitz Operators on the Symmetrized Bidisc 8497

contractive if ‖ξ · h‖ ≤ ‖ξ‖∞,�‖h‖ for all ξ in C[z1, z2] and h in H. For example, by virtue

of Ando’s theorem, a pair of commuting contractions T1 and T2 acting on a Hilbert space

H makes H a D2-contractive Hilbert module if we define

ξ · h = ξ(T1, T2)h, for all polynomials ξ in two variables and h ∈ H. (2.1)

Conversely, any D2-contractive Hilbert module gives rise to a pair of commuting

contractions T1 and T2 such that the module action agrees with (2.1) above. Indeed,

just define Tih = zi · h for h in H and i = 1, 2. We shall be concerned with four Hilbert

modules over the polynomial ring in two variables. The contractivity conditions will be

over the bidisc D2. These specific D2-contractive Hilbert modules that we are concerned

with will appear toward the end of this section because the appropriate spaces and the

commuting pairs of contractions need to be introduced first.

Let π be the symmetrization map

π(z1, z2) = (z1 + z2, z1z2), (2.2)

and J be the complex Jacobian of π , that is, J(z1, z2) = z1 − z2 and T = {α : |α| = 1}.

Definition 5. The Hardy space H2(G) of the symmetrized bidisc is the vector space of

those holomorphic functions f on G that satisfy

sup
0<r<1

∫
T×T

|f ◦ π(rζ1, rζ2)|2|J(rζ1, rζ2)|2dm(ζ1, ζ2) < ∞,

where m is the measure on the torus T×T obtained by taking product of the normalized

arc length measure on the unit circle T with itself. The norm of f ∈ H2(G) is defined

to be

‖f ‖ = ‖J‖−1
{

sup
0<r<1

∫
T×T

|f ◦ π(rζ1, rζ2)|2|J(rζ1, rζ2)|2dm(ζ1, ζ2)

}1/2

,

where ‖J‖2 = ∫
T×T

|J(ζ1, ζ2)|2dm(ζ1, ζ2) = 2.

In the expression of ‖f ‖, we divide by ‖J‖ to ensure that the norm of the function

1 in H2(G) is 1. This space has been discussed before for other purposes in [11]. Our

1st result establishes boundary values of the Hardy space functions. To that end, first

consider the measure μ on the 2-torus T × T defined, for a Borel subset F of T × T, as

μ(F) :=
∫

F
|J(ζ1, ζ2)|2dm(ζ1, ζ2).

We then consider the push forward measure on b� via the symmetrization

map π :
ν(E) = μ(π−1(E)) for every Borel subset E of b�.
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8498 T. Bhattacharyya et al.

We are now ready to define the L2-space over b� with respect to this push-

forward measure:

L2(b�) =
{

f : b� → C :
∫

b�

|f |2dν < ∞
}

=
{

f : b� → C :
∫
T×T

|f (π(ζ1, ζ2))|2|J(ζ1, ζ2)|2dm(ζ1, ζ2) < ∞
}

.

The following embedding lemma immediately allows us to consider boundary

values of the Hardy space functions.

Lemma 6. There is an isometric embedding of the space H2(G) inside L2(b�).

Proof. Consider the subspace

H2
anti(D

2)
def= {

f ∈ H2(D2) : f (z1, z2) = −f (z2, z1)
}

of anti-symmetric functions of the Hardy space over the bidisc

H2(D2) =
⎧⎨⎩f : D2 → C : f (z1, z2) =

∞∑
i=0

∞∑
j=0

ai,jz
i
1zj

2 with
∞∑

i=0

∞∑
j=0

|ai,j|2 < ∞
⎫⎬⎭ .

Suppose L2
anti(T

2) is the subspace of L2(T2) consisting of anti-symmetric func-

tions, that is,

f (ζ1, ζ2) = −f (ζ2, ζ1)a.e..

Define Ũ : H2(G) → H2
anti(D

2) by

Ũ(f ) = 1

‖J‖J(f ◦ π), for all f ∈ H2(G) (2.3)

and U : L2(b�) → L2
anti(D

2) by

Uf = 1

‖J‖J(f ◦ π), for all f ∈ L2(b�). (2.4)

It is easy to see that U and Ũ are indeed unitary operators. Also note that there is an

isometry W : H2
anti(D

2) → L2
anti(T

2) that sends a function to its radial limit. Therefore,
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we have the following commutative diagram:

Hence, the map that places H2(G) isometrically into L2(b�) is U−1 ◦ W ◦ Ũ. �

The above identification theorem reveals that the isometric image of the Hardy

space of the symmetrized bidisc is precisely the following space:

{
f ∈ L2(b�) : U(f ) has all the negative Fourier coefficients zero

}
.

In this paper, we shall not make any distinction between these two realizations of the

Hardy space of the symmetrized bidisc and Pr will stand for the orthogonal projection

of L2(b�) onto the isometric image of H2(G) inside L2(b�). With this identification, the

unitary Ũ is the restriction of the unitary U to the subspace H2(G). Hence, we shall not

write Ũ any more. Whenever we mention U, it will be clear from the context whether it

is being applied on L2(b�) or on H2(G). In the latter case, the range is H2
anti(D

2).

The internal co-ordinates of the (open or closed) symmetrized bidisc will be

denoted by (s, p). Several criteria for a member (s, p) of C2 to belong to G (or �) are

known; the interested reader may see [9, Theorem 1.1]. Let

L∞(b�) = {
ϕ : b� → C : there exists M > 0, such that |ϕ(s, p)| ≤ M a.e. in b�

}
.

Definition 7. For a function ϕ in L∞(b�), the multiplication operator Mϕ is defined to

be the operator on L2(b�):

Mϕf (s, p) = ϕ(s, p)f (s, p),

for all f in L2(b�). The Mϕ is called the Laurent operator with symbol ϕ. The compression

of Mϕ to H2(G) is called Toeplitz operator and is denoted by Tϕ . Therefore,

Tϕf = PrMϕf for all f in H2(G).

We note that the co-ordinate multiplication operators Ms and Mp are commuting

normal operators on L2(b�). We now describe an equivalent way of studying Laurent

operators and Toeplitz operators on the symmetrized bidisc. Let L∞
sym(T2) denote the
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8500 T. Bhattacharyya et al.

sub-algebra of L∞(T2) consisting of symmetric functions, that is, f (ζ1, ζ2) = f (ζ2, ζ1) a.e.

and �1 : L∞(b�) → L∞
sym(T2) be the ∗-isomorphism defined by

ϕ �→ ϕ ◦ π ,

where π is as defined in (2.2). Let �2 : B(L2(b�)) → B(L2
anti(T

2)) denote the conjugation

map by the unitary U as defined in (2.3), that is,

T �→ UTU∗.

Proposition 8. Let �1 and �2 be the above ∗-isomorphisms. Then the following

diagram is commutative:

where i1 and i2 are the canonical inclusion maps. Equivalently, for ϕ ∈ L∞(b�), the

operators Mϕ on L2(b�) and Mϕ◦π on L2
anti(T

2) are unitarily equivalent via the unitary U.

Proof. To show that the above diagram commutes all we need to show is that UMϕU∗ =
Mϕ◦π , for every ϕ in L∞(b�). This follows from the following computation: for every ϕ in

L∞(b�) and f ∈ L2
anti(T

2),

UMϕU∗(f ) = U(ϕU∗f ) = (ϕ ◦ π)
1

‖J‖J(U∗f ◦ π) = Mϕ◦π (f ).

�

As a consequence of the above, given a Toeplitz operator on the Hardy space of

the symmetrized bidisc, there is a unitarily equivalent copy of it on H2
anti(D

2).

Corollary 9. For ϕ ∈ L∞(b�), Tϕ is unitarily equivalent to Tϕ◦π := PaMϕ◦π |H2
anti(D

2), where

Pa stands for the projection of L2
anti(T

2) onto H2
anti(D

2).

Proof. This follows from the fact that the operators Mϕ and Mϕ◦π are unitarily

equivalent via the unitary Ũ, which takes H2(G) onto H2
anti(D

2). �

In what follows, the pair (Ts, Tp) will be specially useful, where Tsf = Msf and

Tpf = Mpf for f in H2(G) (no projection is required because H2(G) is invariant under
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Ms and Mp). The unitary U mentioned in the theorem above intertwines Ts with Tz1+z2
=

Mz1+z2
|H2

anti(T
2) and Tp with Tz1z2

= Mz1z2
|H2

anti(T
2). In the decomposition L2(b�) = H2(G) ⊕

(L2(b�) 
 H2(G)), we have

Ms =
(

Ts ∗
0 ∗

)
and Mp =

(
Tp ∗
0 ∗

)
.

Lemma 10. The pair (Ms, Mp) is a commuting pair of normal operators and

σ(Ms, Mp) = b�.

Proof. The Laurent operators Ms and Mp are co-ordinate multiplications on L2(b�).

Hence, they are normal and σ(Ms, Mp) = b�. �

If we appeal to Proposition 3, we see that the pair (Ms, Mp) is a �-unitary. Thus,

by Proposition 4, (Ts, Tp) is a �-isometry. Since the adjoint pair of a �-contraction is

again a �-contraction, the pair (T∗
s , T∗

p) is a �-contraction. So, it has a fundamental

operator.

Since polynomials of the form zj
1 − zj

2 with j = 1, 2, . . . form a basis for H2
anti(D

2),

we define X in B(H2
anti(D

2)) by defining it on these elements of H2
anti(D

2) and extending

linearly:

X(z1z2)i(zj
1 − zj

2) = (z1z2)i(zj+1
1 − zj+1

2 ) for i = 0, 1, . . . and j = 1, 2, . . . . (2.5)

Let us denote

Y := U∗XU. (2.6)

Since X commutes with Mz1z2
|H2

anti(D
2), Y commutes with Tp.

There is a reducing subspace of X that plays a special role. Define

E = span
{
zj

1 − zj
2 : 1 ≤ j < ∞

}
⊂ H2

anti(D
2)

and it can be easily checked that E is a reducing subspace for X. Let X0 = X|E . Consider

four Hilbert modules as follows.

HM1 : H2(G)with the module actionξ · h = ξ(Tp, Y)h,

HM2 : H2
anti(D

2)with the module actionξ · h = ξ(Mz1z2
|H2

anti(D
2), X)h,

HM3 : H2(D) ⊗ Ewith the module actionξ · h = ξ(Tz ⊗ IE , IH2(D) ⊗ X0)h,

HM4 : H2(D2)with the module actionξ · h = ξ(Tz1
, Tz2

)h.
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Two Hilbert modules H1 and H2 over the polynomial ring C[z1, z2] are said to be

isomorphic if there is a unitary � : H1 → H2 such that

�(ξ · h) = ξ · �(h) for all polynomials ξ and all h in H1.

Theorem I. The four D2-contractive Hilbert modules above are isomorphic, that is,

HM1
∼= HM2

∼= HM3
∼= HM4.

Proof. The 1st isomorphism is by virtue of U of (2.4).

For the 2nd one, note that the vectors {zi ⊗ (zj
1 − zj

2) : i = 0, 1, 2, . . . and j =
1, 2, 3, . . .} form an orthogonal basis for H2(D)⊗E . On the other hand, the space H2

anti(D
2)

is spanned by the orthogonal set {(z1z2)i(zj
1 − zj

2) : i ≥ 0 and j ≥ 1}. Define the unitary

operator from H2
anti(D

2) onto H2
E (D) by mapping

(z1z2)i(zj
1 − zj

2) �→ zi ⊗ (zj
1 − zj

2)

and then extending linearly. This preserves norms, is surjective, and intertwines Tz1z2

with Tz ⊗ I and X with I ⊗ X0.

And for the 3rd one, consider the map

zi ⊗ (zj
1 − zj

2) �→ √
2zi

1zj−1
2 for i ≥ 0, j ≥ 1,

and extend linearly. This norm-preserving map takes orthonormal basis of H2
E (D) to that

of H2(D2) and hence is unitary. Also it is easy to see that this unitary map intertwines

the operators Tz and I ⊗ X0 acting on H2
E (D) with the operators Tz1

and Tz2
acting on

H2(D2), respectively. This completes the proof of the theorem. �

The operator Y defined above is important for this note. It will appear again. So,

we end this section relating it to the fundamental operator of (T∗
s , T∗

p). The fundamental

operator of the adjoint of a �-isometry is especially nice. Indeed, if (T, V) is a �-isometry,

then by general theory, delineated at the end of the Preliminaries section, T∗ − TV∗

is nonzero only on the subspace DV∗ . Moreover, since V is an isometry and hence

V∗DV∗ = 0, we have T∗−TV∗ acting on DV∗ is just T∗|DV∗ . Applying this to the �-isometry

(Mz1+z2
, Mz1z2

)|H2
anti(D

2), a little computation shows that the fundamental operator of the

adjoint of (Mz1+z2
, Mz1z2

)|H2
anti(D

2) is X0. Recall that E is a reducing subspace for X. By

the theorem above, DT∗
p

is then a reducing subspace for Y. By unitary equivalence, the
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fundamental operator of (T∗
s , T∗

p) is Y∗|DT∗
p
. Therefore, Y is the inflation of the adjoint of

the fundamental operator of (T∗
s , T∗

p).

3 The Brown–Halmos Relations

The definition of a Toeplitz operator is analytic. Hence, it is interesting to characterize

it algebraically. This is what we do in Theorem II below. If M is a bounded operator

on L2(T) belonging to {Mz}′, the commutant of the operator Mz on L2(T), then it is well

known that there exists a function ϕ ∈ L∞(T) such that M = Mϕ . The following result is

an analogue of this phenomenon for the symmetrized bidisc.

Lemma 11. Let M be a bounded operator on L2(b�) that commutes with both Ms and

Mp. Then there exists a function ϕ ∈ L∞(b�) such that M = Mϕ .

Proof. Since (Ms, Mp) is a pair of commuting normal operators and σ(Ms, Mp) = b�,

then by the spectral theorem for commuting normal operators the von Neumann algebra

generated by {Ms, Mp} is L∞(b�), which is a maximal abelian von Neumann algebra. This

completes the proof.
�

By Proposition 8, the above result can be rephrased in the bidisc set up.

Corollary 12. Let Mz1+z2
and Mz1z2

denote the multiplication operators on L2
anti(T

2).

Then any bounded operator M on L2
anti(T

2) that commutes with both Mz1+z2
and Mz1z2

is

of the form Mϕ , for some function ϕ ∈ L∞
sym(T2).

Lemma 13. The pair (Ts, Tp) is a pure �-isometry with (Ms, Mp) as its minimal �-

unitary extension and σ(Ts, Tp) = �.

Proof. we have already seen that the pair (Ts, Tp) is a �-isometry. The operator Tp is

pure because by Corollary (9) Tp is unitarily equivalent to Mz1z2
|H2

anti(D
2), which is pure.

The extension (Ms, Mp) is minimal because Mz1z2
is the minimal unitary extension of

Mz1z2
|H2

anti(D
2).

It remains to prove that σ(Ts, Tp) = �. This is easily accomplished by noting that

H2(G) is a reproducing kernel Hilbert space; see [11, p. 513]. Its kernel is

kS((s1, p1), (s2, p2)) = 1

(1 − p1p̄2)2 − (s1 − s̄2p1)(s̄2 − s1p̄2)
.

If (s, p) is a point of G, then (s, p) is a joint eigenvalue of (T∗
s , T∗

p) with the

eigenvector k(·, (s, p)). Since (s, p) is in G if and only if (s, p) is in G, we have
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entire G in the joint point spectrum of (T∗
s , T∗

p). Since the spectrum is a closed set,

σ(Ts, Tp) = σ(T∗
s , T∗

p) = �. �

We progress with basic properties of Toeplitz operators. Although, a Toeplitz

operator is defined in terms of an L∞ function, it is a difficult question of how to

recognize a given bounded operator T on the relevant Hilbert space as a Toeplitz

operator. This question was answered for the Hardy space of the unit disc by Brown

and Halmos in [14, Theorem 6] where they showed that T has to be invariant under

conjugation by the unilateral shift. We show that in our context one needs both Ts and

Tp to give such a characterization.

Definition 14. Let T be a bounded operator on H2(G). We say that T satisfies the

Brown–Halmos relations with respect to the �-isometry (Ts, Tp) if

T∗
s TTp = TTs and T∗

pTTp = T. (3.1)

It is a natural question whether any of the two Brown–Halmos relations implies

the other. We give here an example of an operator Y that satisfies the 2nd one, but not

the 1st.

Example 15. This example shows that the operator Y defined in (2.6) does not satisfy

the first of the Brown–Halmos relations. To that end, we note that

T∗
s YTp = T∗

s TpY = TsY

so that the question boils down to whether Y commutes with Ts. This is easy to resolve

using the U of (2.4) because

YTs(1) = U∗XUTs(1) = 1

‖J‖U∗X(z2
1 − z2

2) = 1

‖J‖U∗(z3
1 − z3

2) = s2 − p

and TsY(1) = TsU
∗XU(1) = 1

‖J‖TsU
∗X(z1 − z2) = 1

‖J‖TsU
∗(z2

1 − z2
2) = Tss = s2.

However, the 2nd Brown–Halmos relation is satisfied because of the commutativity of

Y with Tp.

Theorem II 1. A Toeplitz operator satisfies the Brown–Halmos relations and vice

versa.
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Proof. We first prove that the condition is necessary. Let T be a Toeplitz operator with

symbol ϕ. Then for f , g ∈ H2(G),

〈T∗
pTϕTpf , g〉 = 〈TϕTpf , Tpg〉

= 〈PrMϕTpf , Tpg〉
= 〈MϕMpf , Mpg〉
= 〈Mϕf , g〉
= 〈PrMϕf , g〉 = 〈Tϕf , g〉.

Also,

〈T∗
s TϕTpf , g〉H2 = 〈PrMϕTpf , Tsg〉H2

= 〈MϕMpf , Msg〉L2

= 〈M∗
s MpMϕf , g〉L2

= 〈MϕMsf , g〉L2

= 〈PrMϕMsf , g〉H2 = 〈TϕTsf , g〉H2 .

In the above computation, we have used the equality Ms = M∗
s Mp.

Now we prove that the condition is sufficient. To this end we work on H2
anti(D

2)

and invoke Corollary 9 to draw the conclusion. So let T be a bounded operator on

H2
anti(D

2) satisfying T∗
z1+z2

TTz1z2
= TTz1+z2

and T∗
z1z2

TTz1z2
= T. For two different

integers i and j, let ei,j := zi
1zj

2 − zj
1zi

2. Note that for n ≥ 0, Mn
z1z2

ei,j = ei+n,j+n.

Therefore, for every different integers i and j, there exists a sufficiently large n such

that Mn
z1z2

ei,j ∈ H2
anti(D

2). For each n ≥ 0, define an operator Tn on L2
anti(T

2) by

Tn := M∗n
z1z2

TPaMn
z1z2

,

where Pa is the orthogonal projection of L2
anti(T

2) onto H2
anti(D

2). Let i, j, k, and l be

integers such that i �= j and k �= l, then for sufficiently large n, we have

〈Tnei,j, ek,l〉 = 〈TMn
z1z2

ei,j, Mn
z1z2

ek,l〉 = 〈Tei+n,j+n, ek+n,l+n〉. (3.2)

Since T∗
z1z2

TTz1z2
= T, we have for every n ≥ 0, T∗n

z1z2
TTn

z1z2
= T. Let i, j, k and l be

nonnegative integers such that i �= j and k �= l, then for every n ≥ 0,

〈Tei,j, ek,l〉 = 〈TTn
z1z2

ei,j, Tn
z1z2

ek,l〉 = 〈Tei+n,j+n, ek+n,l+n〉. (3.3)
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Since {ei,j : i �= j ∈ Z} is an orthogonal basis for L2
anti(T

2) and the sequence of operators

Tn on L2
anti(T

2) is uniformly bounded by ‖T‖, by (3.2) and (3.3) the sequence Tn converges

weakly to some operator T∞ (say) acting on L2
anti(T

2).

We now use Corollary 12 to conclude that T∞ = Mϕ , for some ϕ ∈ L∞
sym(T2).

Therefore, we have to show that T∞ commutes with both Mz1+z2
and Mz1z2

. That T∞
commutes with Mz1z2

is clear from the definition of T∞. The following computation

shows that T∞ commutes with Mz1z2
also. Let i, j, k, and l be integers such that i �= j and

k �= l. Then

〈M∗
z1+z2

T∗∞ei,j, ek,l〉 = lim
n

〈M∗
z1+z2

M∗n
z1z2

T∗PaMn
z1z2

ei,j, ek,l〉

= lim
n

〈T∗
z1+z2

T∗Mn
z1z2

ei,j, Mn
z1z2

ek,l〉 (for sufficiently large n)

= lim
n

〈T∗
z1z2

T∗Tz1+z2
Mn

z1z2
ei,j, Mn

z1z2
ek,l〉 (applying (3.1))

= lim
n

〈M∗n+1
z1z2

T∗PaMn+1
z1z2

M∗
z1z2

Mz1+z2
ei,j, ek,l〉

= lim
n

〈M∗n+1
z1z2

PaT∗PaMn+1
z1z2

M∗
z1+z2

ei,j, ek,l〉 (since Mz1+z2
= M∗

z1+z2
Mz1z2

)

= 〈T∗∞M∗
z1+z2

ei,j, ek,l〉.

Therefore, there exists a ϕ ∈ L∞
sym(T2) such that T∞ = Mϕ . Now for f and g in H2

anti(D
2),

we have

〈PaMϕf , g〉 = 〈Mϕf , g〉 = 〈T∞f , g〉
= lim

n
〈Tnf , g〉 = lim

n
〈TTn

z1z2
f , Tn

z1z2
g〉 = 〈Tf , g〉.

Hence, T is the Toeplitz operator with symbol ϕ. �

The following is a straightforward consequence of the characterization of

Toeplitz operators obtained above.

Corollary 16. If T is a bounded operator on H2(G) that commutes with both Ts and Tp,

then T satisfies the Brown–Halmos relations and hence is a Toeplitz operator.

Proof. It is given that TTp = TpT. Multiplying both sides from the left by T∗
p, we get

that T∗
pTTp = T because Tp is an isometry. The following simple computation shows that
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T also satisfies the other relation.

T∗
s TTp = T∗

s TpT = TsT = TTs,

where we used the fact that (Ts, Tp) is a �-isometry and hence Ts = T∗
s Tp. �

4 Further Properties of a Toeplitz Operator

In this section, we study further properties of Toeplitz operators and characterize

Toeplitz operators with analytic and co-analytic symbols.

Lemma 17. For ϕ ∈ L∞(b�) if Tϕ is the zero operator, then ϕ = 0, a.e. In other words,

the map ϕ �→ Tϕ from L∞(b�) into the set of all Toeplitz operators on the symmetrized

bidisc is injective.

Proof. Let ϕ ◦ π(z1, z2) = ∑
i,j∈Z αi,jz

i
1zj

2 ∈ L∞
sym(T2). Then Tϕ◦π on H2

anti(D
2) is the zero

operator. Now we have for every m, k ≥ 0 and n, l ≥ 1,

0 = 〈Tϕ◦π (z1z2)m(zn
1 − zn

2 ), (z1z2)k(zl
1 − zl

2)〉

=
〈∑

i,j∈Z
αi,j(z

i+m+n
1 zj+m

2 − zi+m
1 zj+m+n

2 ), (z1z2)k(zl
1 − zl

2)

〉
= αk+l−m−n,k−m + αk−m,k+l−m−n − αk+l−m,k−m−n − αk−m−n,k+l−m

= 2(αk+l−m−n,k−m − αk−m−n,k+l−m).

To obtain the last equality we have used the fact that αi,j = αj,i for all i, j ∈ Z. Since the

sequence {αi,j} is square summable, the above computation says that for every m, k ≥ 0

and n, l ≥ 1,

αk−m−n+l,k−m = αk−m−n,k−m+l = 0.

Note that {k − m : m, k ≥ 0} = Z and for fixed k, m ≥ 0, {(k − m) − (n − l) : n, l ≥ 1} = Z.

Hence, αi,j = 0 for all i, j ∈ Z. This completes the proof. �

It is easy to see that the space H∞(G) consisting of all bounded analytic

functions on G is contained in H2(G). We identify H∞(G) with its boundary functions.

In other words,

H∞(G) = {
ϕ ∈ L∞(b�) : ϕ ◦ π has no nonzero negative Fourier coefficients

}
.
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Definition 18. A Toeplitz operator Tϕ is called

(1) an analytic Toeplitz operator if ϕ is in H∞(G),

(2) a co-analytic Toeplitz operator if T∗
ϕ is an analytic Toeplitz operator.

Our next goal is to characterize analytic Toeplitz operators. But to be able to do

that we need to define the following notion and prove the proposition following it.

Definition 19. Let ϕ be in L∞(b�). The operator Hϕ : H2(G) → L2(b�) 
 H2(G)

defined by

Hϕf = (I − Pr)Mϕf

for all f ∈ H2(G) is called a Hankel operator.

We write down a few observations about Toeplitz operators for the sake of

completeness. The proofs are similar to the one-dimensional case.

Proposition 20. Let ϕ, ψ ∈ L∞(b�). Then

(1) T∗
ϕ = Tϕ .

(2) The product TϕTψ is a Toeplitz operator if ϕ or ψ is analytic. In each case,

TϕTψ = Tϕψ .

(3) TϕTψ − Tϕψ = −H∗
ϕHψ .

(4) For an operator T, let �(T) be the approximate point spectrum of T. Then

essential range of ϕ = �(Mϕ) = σ(Mϕ) ⊆ �(Tϕ) ⊆ σ(Tϕ).

Hence,

(a) ‖ϕ‖∞ = ‖Mϕ‖ = ‖Tϕ‖ = r(Tϕ) and

(b) ‖Tϕ − K‖ ≥ ‖Tϕ‖, for every compact operator K on H2(G).

Now we are ready to characterize Toeplitz operators with analytic symbol.

Theorem III Let Tϕ be a Toeplitz operator. Then the following are equivalent:

(i) Tϕ is an analytic Toeplitz operator;

(ii) Tϕ commutes with Tp;

(iii) Tϕ(RanTp) ⊆ RanTp;

(iv) TpTϕ is a Toeplitz operator;
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(v) Tϕ commutes with Ts;

(vi) TsTϕ is a Toeplitz operator.

Proof. (i) ⇔ (ii):That (i) ⇒ (ii) is easy. To prove the other direction, we use part (3)

of Proposition 20 to get that H∗
pHϕ = 0. This shows that the corresponding product of

Hankel operators on H2
anti(D

2) is also zero, that is, H∗
z1z2

Hϕ◦π = 0. Let the power series

expansion of ϕ ◦ π ∈ L∞
symm(T2) be

ϕ ◦ π(z1, z2) =
∑

m,n∈Z
αm,nzm

1 zn
2 for all z1, z2 ∈ T.

Since ϕ ◦ π is symmetric we have αm,n = αn,m, for every m, n ∈ Z. For k, r ≥ 0 and l ≥ 1,

we have

0 = 〈Hϕ◦π (z1z2)r(zl
1 − zl

2), Hz1z2
(zk+1

1 − zk+1
2 )〉L2(T2)

=
〈 ∑

m,n∈Z
αm,nzm

1 zn
2 (z1z2)r(zl

1 − zl
2), (zk

1z2 − z1zk
2)

〉
L2(T2)

=
〈 ∑

m,n∈Z
αm,n(zm+r+l

1 zn+r
2 − zm+r

1 zn+r+l
2 ), (zk

1z2 − z1zk
2)

〉
L2(T2)

= 2(αk−r−l,−r−1 − αk−r,−r−1−l),

where to obtain the last equality we have used αm,n = αn,m for every m, n ∈ Z. Now since

the sequence {αm,n} is square summable, we conclude that for every k, r ≥ 0 and l ≥ 1

α−r−1,(k−l)−r = α−(r+l)−1,k−r = 0.

From these equalities we claim that αm,n = 0, unless both of m and n are nonnegative,

which would imply that ϕ is analytic. First we show that if m ≥ 0 and n ≥ 1, then

α−n,m = αm,−n = 0. For that we choose r = n − 1 and k, l such that k − l = m + n − 1.

For this choice of k, r, and l we have 0 = α−r−1,(k−l)−r = α−n,m. Now we show that if

m ≥ 1 and n ≥ 0, then α−m,−n = 0. To this end, we choose r = m − 1 and k, l such that

k − l = m − n − 1. For this choice of k, r, and l we have 0 = α−r−1,(k−l)−r = α−m,−n.

(ii) ⇔ (iii): The part (ii) ⇒ (iii) is easy. Conversely, suppose that RanTp is

invariant under Tϕ . Since RanTp is closed, we have for every f ∈ H2(G),

TϕTpf = Tpgf for some gf in H2(G). ⇒ T∗
pTϕTpf = gf ⇒ Tϕf = gf (by Theorem II).

Hence, TϕTp = TpTϕ .
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(ii) ⇔ (iv): If Tϕ commutes with Tp, then TpTϕ is same as TϕTp, which is a

Toeplitz operator by Proposition 20. Conversely, if TpTϕ is a Toeplitz operator, then

it satisfies Brown–Halmos relations, the 2nd one of which implies that Tϕ commutes

with Tp.

(i) ⇔ (v): For an analytic symbol ϕ, Tϕ obviously commutes with Ts. The proof

of the converse direction is done by the same technique as in the proof of (ii) ⇒ (i). If

Tϕ commutes with Ts, then by part (3) of Proposition 20 we have H∗
s Hϕ = 0. Suppose

ϕ ◦ π ∈ L∞
symm(T2) has the following power series expansion:

ϕ ◦ π(z1, z2) =
∑

m,n∈Z
αm,nzm

1 zn
2 for all z1, z2 ∈ T.

For every k, l ≥ 1 and r ≥ 0, we have

0 = 〈Hϕ◦π (z1z2)r(zl
1 − zl

2), Hz1+z2
(zk

1 − zk
2)〉L2(T2)

=
〈 ∑

m,n∈Z
αm,nzm

1 zn
2 (z1z2)r(zl

1 − zl
2), (zk

1z2 − z1zk
2)

〉
L2(T2)

=
〈 ∑

m,n∈Z
αm,n(zm+r+l

1 zn+r
2 − zm+r

1 zn+r+l
2 ), (zk

1z2 − z1zk
2)

〉
L2(T2)

= 2(α−r−1,(k−l)−r − α−(r+l)−1,k−r).

A similar argument as in the proof of (ii) ⇒ (i) reveals that αm,n = 0, if either of m and

n is negative; in other words, ϕ is analytic.

(v) ⇔ (vi): The implication (v) ⇒ (vi) follows from Proposition 20. Conversely

suppose that TsTϕ is a Toeplitz operator. Therefore, applying Theorem II and the relation

Ts = Ts
∗Tp, we get TϕTs = Ts

∗TϕTp = Tp
∗TsTϕTp = TsTϕ . �

The following is a direct consequence of the preceding theorem.

Corollary 21. Let Tψ be a Toeplitz operator. Then the following are equivalent:

(i) Tψ is a co-analytic Toeplitz operator;

(ii) Tψ commutes with T∗
p;

(iii) T∗
ψ(RanTp) ⊆ RanTp;

(iv) TpT∗
ϕ is a Toeplitz operator;

(v) T∗
ϕ commutes with Ts;

(vii) TsT
∗
ϕ is a Toeplitz operator.
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We end this section with two facts about Toeplitz operators on the symmetrized

bidisc—one is similar to the unit disc and the other is dissimilar.

Proposition 22. The only compact Toeplitz operator on the symmetrized bidisc is zero.

Proof. The proof is similar to that in case of the unit disc. Let Tϕ be a compact Toeplitz

operator. For every m > n ≥ 0, let em,n = zm
1 zn

2 − zn
1 zm

2 . Then {em,n : m > n ≥ 0} is an

orthogonal basis of H2
anti(D

2). Since Tϕ is compact, ‖Tϕ◦πem,n‖ → 0 as m, n → ∞. Also

T∗
z1z2

Tϕ◦πTz1z2
= Tϕ◦π , so we have for every r ≥ 0,

|〈Tϕ◦πem,n, ek,l〉| = |〈Tϕ◦πem+r,n+r, ek+r,l+r〉| ≤ √
2‖Tϕ◦πem+r,n+r‖ → 0

as r → ∞, which shows that Tϕ◦π is zero, since m > n ≥ 0 and k > l ≥ 0 are arbitrary. �

It has been observed over the past decade that operator theory on the sym-

metrized bidisc enjoys some one-dimensional phenomena. Specifically, we would like

to mention the following peculiar fact related to the minimal normal boundary dilation

of a �-contraction (S, P). The space on which the minimal normal boundary dilation

of (S, P) acts is the same as the space of minimal unitary dilation of the contraction P

[12, Theorem 4 and the discussion preceding it]. However, the following example shows

that the Coburn alternative, which has several useful consequences in the study of

Toeplitz operators on the unit disc, fails to hold true in the symmetrized bidisc.

Proposition 23 (The Coburn alternative). For a nonzero function ϕ in L∞(T), either Tϕ

or Tϕ
∗ is injective.

See [24, Theorem 3.3.10] for a proof of this. To show that it fails in the case of

the symmetrized bidisc, we choose the symbol to be ϕ(z1, z2) = z2
1z2

2 + z1
2z2

2. Note that

ϕ is in L∞
sym(T2) and Tϕ(z1 − z2) = 0 = T∗

ϕ(z1 − z2).

5 Asymptotic Toeplitz Operators and Compactness

The weak limit of a sequence {T∗
z

nTTn
z }n≥1 from B(H2(D)) is a Toeplitz operator. The 2nd

co-ordinate multiplier Tp of H2(G) is unitarily equivalent to Tz on a vector-valued Hardy

space on the unit disc. But, we have seen an example that shows that an operator need

not be a Toeplitz operator even if it commutes with Tp. Therefore, if T ∈ B(H2(G)) is

such that the sequence {T∗
p

nTTn
p }n≥1 is weakly convergent, the weak limit, B say, may not

be a Toeplitz operator on H2(G). The following lemma gives a necessary and sufficient

condition for when B is Toeplitz.
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Lemma 24. Let T and B be bounded operators on H2(G) such that T∗
p

nTTn
p → B weakly.

Then B is a Toeplitz operator if and only if

T∗
p

n[T, Ts]T
n
p → 0 weakly,

where [T, Ts] denotes the commutator of T and Ts.

Proof. Note that if T and B are bounded operators on H2(G) such that T∗
p

nTTn
p → B

weakly, then T∗
pBTp = B. Suppose T∗

p
n[T, Ts]T

n
p → 0 weakly. To prove that B is Toeplitz,

it remains to show that B satisfies the 1st Brown–Halmos relation with respect to the

�-isometry (Ts, Tp).

T∗
s BTp = w-lim T∗

s (T∗
p

nTTn
p )Tp

= w-lim T∗
p

n
(T∗

s TTp)Tn
p

= w-lim T∗
p

n+1TsTTn+1
p

= w-lim T∗
p

n+1
(TsT − TTs + TTs)T

n+1
p

= w-lim T∗
p

n+1TTn+1
p Ts = BTs.

Conversely, suppose that the weak limit B of T∗
p

nTTn
p is a Toeplitz operator and hence

satisfies the Brown–Halmos relations. Thus,

w-lim T∗
p

n
(TTs − TsT)Tn

p = w-lim(T∗
p

nTTn
p Ts − T∗

p
nT∗

s TpTTn
p )

= w-lim(T∗
p

nTTn
p Ts − T∗

s T∗
p

n−1TTn−1
p Tp)

= BTs − T∗
s BTp = 0. �

The next result characterizes compact operators on H2(G).

Proposition 25. For every n ≥ 1, let ηn : B(H2(G)) → B(H2(G) ⊕ H2(G)) be the

completely positive map defined by

ηn(T) :=
(

Y∗n

T∗n
p

)
T

(
Yn, Tn

p

)
,

where Y is the bounded operator on H2(G) as defined in (2.6). Then T ∈ B(H2(G)) is

compact if and only if ηn(T) → 0 in norm as n → ∞.
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Proof. By virtue of Theorem I, a bounded operator T on H2(G) satisfies the conver-

gence conditions in the statement if and only if the isomorphic copy T̃ of T on H2(D2)

satisfies T∗
zi

mT̃Tm
zj

→ 0 in norm for 1 ≤ i, j ≤ 2. This is known to be a characterization of

compact operators on H2(D2); see [23], for example. That completes the proof. �

Definition 26. A bounded operator T on H2(G) is called an asymptotic Toeplitz

operator if T∗
p

n[T, Ts]T
n
p → 0, T∗

p
nTTn

p → B and ηn(T − B) → 0, where ηn is as in

Proposition 25.

Theorem IV. A bounded operator T on H2(G) is an asymptotic Toeplitz operator if and

only if T is the sum of a compact operator and a Toeplitz operator.

Proof. If T is a asymptotic Toeplitz operator and T∗
p

nTTn
p converges to B, then it follows

from Lemma 24 that B is a Toeplitz operator because T∗
p

n[T, Ts]T
n
p → 0. Also, since ηn(T−

B) → 0, by Proposition 25, T −B is a compact operator. Hence, T is the sum of a compact

operator and a Toeplitz operator.

Conversely, let T = K + Tϕ , where K is some compact operator. Then by

Proposition 25, T∗
p

nTTn
p → Tϕ . Since Tϕ is Toeplitz, by Lemma 24, T∗

p
n[T, Ts]T

n
p → 0. And

finally, since K is compact, by Proposition 25, ηn(T −Tϕ) → 0. Hence, T is an asymptotic

Toeplitz operator.
�

Remark 27. If T is an operator such that both T∗n
p TTn

p and Y∗nTYn converge to T, even

then it is not necessary that T is a Toeplitz operator. For example, choose T = Y. Because

Y is an isometry and it commutes with Tp, for every n ≥ 0, Y∗nYYn = Y and T∗n
p YTn

p = Y.

But we have noticed in Example 15 that Y is not a Toeplitz operator.

6 A Commutant Lifting Result

It is a natural generalization of the concept of Toeplitz operators to replace the

multiplication by the co-ordinate multiplier by a more general isometry (in the classical

case of Brown and Halmos). Moreover, depending on the domain, one can introduce

a tuple of operators with a suitable property. Prunaru did it for the Euclidean

ball Bd. The natural operator tuple to consider there is a spherical isometry, that

is, a commuting tuple T = (T1, T2, . . . , Td) of bounded operators with the property

T∗
1T1 + T∗

2T2 + · · · + T∗
dTd = I, its prototypical example being the tuple of co-ordinate

multiplications Tz = (Tz1
, Tz2

, . . . , Tzd
) on the Hardy space of the Euclidean ball. Prunaru

called an operator X a Toeplitz operator with respect to a given spherical isometry T if

T∗
1XT1 + T∗

2XT2 + · · · + T∗
dXTd = X.
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Definition 28. Given a Hilbert space H, a �-isometry (S, P) on H and a bounded

operator T on H, we say that T satisfies the Brown–Halmos relation with respect to

the �-isometry (S, P) (or just satisfies the Brown–Halmos relation when the pair (S, P) is

clear from the context) if

S∗TP = TS and P∗TP = T. (6.1)

Definition 29. We say that a family F = {(Sα, Pα) : α ∈ �} of �-isometries on a Hilbert

space H is commuting if the union ∪α∈�{Sα, Pα} is a commutative set of operators.

For a commuting family F of �-isometries on a Hilbert space H, let T (F) be the

set of all operators X ∈ B(H) such that

S∗
αXPα = XSα and P∗

αXPα = X, for all α ∈ �.

In other words, an element of T (F) satisfies the Brown–Halmos condition for each α.

Remark 30. T (F) contains F and the commutant of F .

The main result of this section is the following. It is similar in spirit to [27,

Theorem 1.2] whose roots can be traced back to [8, Section 3]. The difference in our

theorem lies in the Sα. We shall apply Beltita and Prunaru’s ideas to obtain simultaneous

dilation of the Pα and then note how the representation acts on Sα. It will be clear in

course of the proof that the dilation space is no bigger than that of the simultaneous

dilation of Pα.

Theorem V. Let F = {(Sα, Pα) : α ∈ �} be a commuting family of �-isometries on a

Hilbert space H. Then

(1) There exists a commuting family G = {(Rα, Uα) : α ∈ �)} of �-unitaries

acting on a Hilbert space K containing H such that each pair (Rα, Uα) is an

extension of (Sα, Pα). Moreover, G is the minimal extension of F in the sense

that K is the smallest reducing subspace of each Rα and Uα containing H. In

fact,

K =
{
Um1

α1
Um2

α2
· · · Umn

αn
h : h ∈ H, n ∈ N and for 1 ≤ j ≤ n, αj ∈ � and mj ∈ Z

}
.

Moreover, any X ∈ B(H) commutes with F if and only if X has a unique norm

preserving extension Y acting on K commuting with G.
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(2) An X ∈ B(H) is in T (F) if and only if there exists an Y ∈ B(K) in the

commutant of the von Neumann algebra generated by {Rα, Uα : α ∈ �} such

that X = PHY|H.

(3) Let C∗(F) and C∗(G) denote the unital C∗-algebras generated by {Sα, Pα : α ∈
�} and {Rα, Uα : α ∈ �}, respectively and I(F) denote the closed ideal of

C∗(F) generated by all the commutators XY − YX for X, Y ∈ C∗(F) ∩ T (F).

Then there exists a short exact sequence

0 → I(F) ↪→ C∗(F)
π0−→ C∗(G) → 0

with a completely isometric cross section, where π0 : C∗(F) → C∗(G) is the

canonical unital ∗-homomorphism that sends the generating set F to the

corresponding generating set G, that is, π0(Pα) = Uα and π0(Sα) = Rα for

all α ∈ �.

Remark 31. A commuting family G = {(Rα, Uα) : α ∈ �)} of �-unitaries as above is said

to extend F .

Proof. For each α ∈ �, define �α : B(H) → B(H) by

�α(X) = P∗
αXPα.

Then the family {�α}α∈� consists of commuting, completely positive, unital, normal

mappings acting on B(H). Therefore, by [27, Lemma 2.3], there exists a completely

positive map � : B(H) → B(H) such that � ◦ � = � and

Ran� =
{
X ∈ B(H) : �α(X) = P∗

αXPα = X, for all α ∈ �
}
.

In particular, �(X) = X for all X ∈ T (P), where

T (P) =
{
X : P∗

αXPα = X, for all α ∈ �
}
.

Also since � is an idempotent unital completely positive map, it follows from a well-

known result of [15] that

�(�(X)Y) = �(X�(Y)) = �(�(X)�(Y)). (6.2)
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Let C∗(T (P)) denote the C∗-algebra generated by T (P) and �0 denote the

restriction of � to C∗(T (P)). Consider the minimal Stinespring dilation π : C∗(T (P)) →
B(K) of �0. Hence, �0(X) = V∗π(X)V for some isometry V : H → K and for all X ∈ B(H).

It follows from (6.2) that Ker�0 is an ideal of C∗(T (P)) and therefore Ker�0 = Kerπ and

the mapping ρ : π(C∗(T (P))) → B(H) defined by ρ(π(X)) = V∗π(X)V for X ∈ C∗(T (P)) is

a complete isometry such that π ◦ρ = idπ(C∗(T (P))) and Ranρ = Ran�. Define Uα = π(Pα).

The two properties below are obtained from [27, Proof of Theorem 1.2] applied to P:

(P1) The commuting family of unitaries U = {Uα = π(Pα) : α ∈ �} is a minimal

unitary extension of the family of isometries P, that is,

Pα = V∗UαV and Uα(VH) ⊆ VH

for all α ∈ � and K is the minimal reducing subspace containing VH for the

family U .

(P2) If X ∈ B(H) belongs to the commutant of P, then X̂ = π(X) is the unique norm

preserving extension of X in the commutant of U that leaves VH invariant.

We identify H with VH and view H as a subspace of K. Applying (P2) from above,

we get Rα = π(Sα) to be a norm preserving extension of Sα. Moreover, Rα = π(Sα) =
π(Sα) = π(S∗

αPα) = π(Sα)∗π(Pα) = R∗
αUα for each α ∈ �. Hence, by part (3) of Proposition 3,

(Rα, Uα) is a �-unitary for each α. It is now clear from property (P1) that the commuting

family of �-unitaries G = {(Rα, Uα) : α ∈ �)} is a minimal normal extension of the

commuting family of �-isometries F .

For the rest of part (1), note that if X commutes with F , then X belongs to the

commutant of P. Therefore, again by property (P2), π(X) is the unique norm preserving

extension of X in the commutant of U . Moreover, π(X) belongs to the commutant of G as

X commutes with Sα for all α ∈ �. This proves part (1) of the theorem.

To prove part (2), let Y be in the commutant of the von Neumann algebra

generated by the Rα and the Uα. Note that Rα, Uα, and Y have the following matrix

representation with respect to the decomposition H ⊕ (K 
 H) :

(
Sα ∗
0 ∗

) (
Pα ∗
0 ∗

)
and

(
X ∗
∗ ∗

)
,

respectively, and they satisfy R∗
αYUα = RαY and U∗

αYUα = Y. Now it follows from a

simple block matrix computation that X, the compression of Y to H, is in T (F).
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Conversely, if X is in T (F), then the natural candidate for Y is Y = π(X). This

indeed serves the purpose proving part (2).

To prove part (3), we first note that the representation π0 in the statement of the

theorem is actually the restriction of π to C∗(F) as the representation π also maps the

generating set F of C∗(F) to the generating set G of C∗(G). Since π0(F) = G, range of π0

is C∗(G). Therefore, to prove that the following sequence:

0 → I(F) ↪→ C∗(F)
π0−→ C∗(G) → 0

is a short exact sequence, all we need to show is that kerπ0 = I(F). Since π0(C∗(F)) is

commutative, we have XY − YX in the kernel of π0, for any X, Y ∈ C∗(F) ∩ T (F). Hence,

I(F) ⊆ kerπ0. To prove the other inclusion, let us agree to denote by F∗, for a family F of

operators, the adjoints of members of F . Let Z1 be a finite product of members of F∗ and

Z2 be a finite product of members of F and call Z = Z1Z2. Then by the commutativity of

the family F , we have for each α ∈ �, �α(Z) = Z and hence �0(Z) = Z, where �0 and �α’s

are as in the proof of part (1). Note that �0(Z) = PHπ0(Z)|H, for every Z ∈ C∗(F). Now let

Z be any arbitrary finite product of members from F and F∗. Since π0(F) = G, which is

a family of normal operators, we obtain, by Fuglede–Putnam’s theorem that, action of

�0 on Z has all the members from F∗ at the left and all the members from F at the right.

It follows from kerπ = ker� and � is idempotent that kerπ0 = {X − �0(X) : X ∈ C∗(F)}.
Also, because of the above description of �0(X), if X is a finite product of elements from

F and F∗ then X −�0(X) belongs to the ideal generated by all the commutators XY −YX,

where X, Y ∈ C∗(F) ∩ T (F). This shows that kerπ0 = I(F). In order to find a completely

isometric cross section, recall the completely isometric map ρ : π(C∗(T (P))) → B(H)

such that π ◦ ρ = idπ(C∗(T (P))). Set ρ0 := ρ|π(C∗(F)). Then by the definition of ρ it follows

that Ranρ0 ⊆ C∗(F) and therefore is a completely isometric cross section. This completes

the proof of the theorem. �

7 Dual Toeplitz Operators

To pick up from where the last section ended, we note that as a special case of part (2)

above, we know that if (S, P) is a �-isometry on H with (R, U) on K being its minimal �-

unitary extension then an X in B(H) satisfies the Brown–Halmos relations with respect

to (S, P) if and only if there exists an operator Y in the commutant of the von Neumann

algebra generated by {R, U} such that X = PHY|H. The block matrix representation of the

operator Y shows that it need neither be an extension nor a co-extension of the operator

X, in general. For example, choose the �-isometry to be (Ts, Tp). Then by Theorem II, any

operator that satisfies the Brown–Halmos relations with respect to this �-isometry is
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a Toeplitz operator with some symbol ϕ ∈ L∞(b�) and Y, by Lemma 11, would be Mϕ ,

which has the matrix representation as in (7.2).

Dual Toeplitz operators have been studied on the Bergman space of the unit disc

D in [29] and on the Hardy space of the Euclidean ball Bd in [18] and [21]. In our setting,

consider the space

H2(G)⊥ = L2(b�) 
 H2(G). (7.1)

For a symbol ϕ ∈ L∞(b�), define the dual Toeplitz operator on H2(G)⊥ by

DTϕ = (I − Pr)Mϕ |H2(G)⊥ ,

where (I − Pr) denotes the orthogonal projection of L2(b�) onto H2(G)⊥. Therefore, with

respect to the decomposition (7.1) of L2(b�),

Mϕ =
(

Tϕ H∗
ϕ

Hϕ DTϕ

)
. (7.2)

Lemma 32. The special pair D = (DTs, DTp) is a �-isometry with (Ms, Mp) as its

minimal �-unitary extension.

Proof. It is a �-isometry because it is the restriction of the �-unitary (Ms̄, Mp̄) to

the space H2(G)⊥. And this extension is minimal because Mp is the minimal unitary

extension of DTp. �

Theorem VI. A bounded operator T on H2(G)⊥ is a dual Toeplitz operator if and only

if it satisfies the Brown–Halmos relations with respect to D = (DTs, DTp).

Proof. The fact that every dual Toeplitz operator on H2(G)⊥ satisfies the Brown–

Halmos relations with respect to (DTs, DTp) follows from the following identities

Ms
∗MϕMp = MϕMs and Mp

∗MϕMp = Mϕ for every ϕ ∈ L∞(b�)

and from the 2 × 2 matrix representations of the operators in concern. For the converse,

let T on H2(G)⊥ satisfy the Brown–Halmos relations with respect to the �-isometry

(DTs, DTp). By the comments at the beginning of this section and Lemma 11, there is a

ϕ ∈ L∞(b�) such that T is the compression of Mϕ to H2(G)⊥. �
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