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ABSTRACT

Let Ω be an irreducible bounded symmetric domain of rank r in Cd. Let K

be the maximal compact subgroup of the identity component G of the bi-

holomorphic automorphism group of the domain Ω. The group K consist-

ing of linear transformations acts naturally on any d-tuple T =(T1, . . . , Td)

of commuting bounded linear operators. If the orbit of this action modulo

unitary equivalence is a singleton, then we say that T is K-homogeneous.

In this paper, we obtain a model for a certain class of K-homogeneous

d-tuple T as the operators of multiplication by the coordinate functions

z1, . . . , zd on a reproducing kernel Hilbert space of holomorphic functions

defined on Ω. Using this model we obtain a criterion for (i) boundedness,

(ii) membership in the Cowen–Douglas class, (iii) unitary equivalence and

similarity of these d-tuples. In particular, we show that the adjoint of

the d-tuple of multiplication by the coordinate functions on the weighted

Bergman spaces are in the Cowen–Douglas class B1(Ω). For an irreducible

bounded symmetric domain Ω of rank 2, an explicit description of the op-

erator
∑d

i=1 T
∗
i Ti is given. In general, based on this formula, we make a

conjecture giving the form of this operator.

1. Introduction

The theory of circular operators on a Hilbert space is well studied by several

authors [27],[15], [4]. It was noted in [27, Corollary 2] that the weighted shift

operators are circular. In [8], Chavan and Yakubovich generalized this notion

to a spherical tuple of operators. A d-tuple T = (T1, . . . , Td) of commuting

operators is said to be spherical if U · T is unitarily equivalent to T for all

unitary matrix U in the group U(d) of d× d unitary matrices. Here U ·T is the

natural action of U(d) on the d-tuple T . Chavan and Yakubovich proved that

under some mild hypothesis, every spherical d-tuple is unitarily equivalent to

the d-tuple M = (M1, . . . ,Md) of multiplication operators by the coordinate

function z1, . . . , zd on a reproducing kernel Hilbert space determined by a U(d)-

invariant kernel function

∞∑
j=0

aj〈z, w〉j

defined on the open Euclidean unit ball Bd in Cd. One of our main objectives in

this paper is to explore a notion analogous to that of spherical operator tuples

in the context of a bounded symmetric domain.
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Bounded symmetric domains are the natural generalization of an open unit

disc in one complex variable and an open Euclidean unit ball in several complex

variables. A bounded domain Ω ⊂ Cd is said to be symmetric if for every

z ∈ Ω, there exists a biholomorphic automorphism of Ω of period two, having z

as isolated fixed point. The domain Ω is said to be irreducible if it is not

biholomorphically equivalent to a product of two non-trivial domains. We refer

to [20], [1] for the definition and basic properties of bounded symmetric domains.

Let Ω be an irreducible bounded symmetric domain in Cd and let Aut(Ω)

denote the group of biholomorphic automorphisms of Ω, equipped with the

topology of uniform convergence on compact subsets of Ω. Let G denote the

connected component of identity in Aut(Ω). It is known that G acts transitively

on Ω. Let K be the subgroup of linear automorphisms in G. By Cartan’s

theorem [25, Proposition 2, p. 67],

K = {φ ∈ G : φ(0) = 0}
is a maximal compact subgroup of G and Ω is ismorphic to G/K. Note that

U(d) is the subgroup of linear biholomorphic automorphisms of Aut(Bd). There-

fore, it is natural to replace U(d) with the subgroup K of linear biholomorphic

automorphisms of an irreducible bounded symmetric domain Ω and study all

commuting d-tuples T such that k ·T is unitarily equivalent to T for all k ∈ K.

The action of the group K on the d-tuples is defined below. The group K acts

on Ω by the rule

k · z := (k1(z), . . . , kd(z)), k ∈ K and z ∈ Ω.

Note that k1(z), . . . , kd(z) are linear polynomials. Thus k ∈ K acts on any

commuting d-tuple of bounded linear operators T = (T1, . . . , Td), defined on a

complex separable Hilbert space H, naturally, via the map

k · T := (k1(T1, . . . , Td), . . . , kd(T1, . . . , Td)).

Definition 1.1: A d-tuple T = (T1, . . . , Td) of commuting bounded linear oper-

ators on H is said to be K-homogeneous if for all k in K the operators T

and k · T are unitarily equivalent, that is, for all k in K there exists a unitary

operator Γ(k) on H such that

(1.1) TjΓ(k) = Γ(k)kj(T1, . . . , Td), j = 1, 2, . . . , d.

For brevity, we will write

TΓ(k) = Γ(k)(k · T ).
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While a d-tuple of a K-homogeneous operator is clearly modeled after that of

a spherical tuple, it is a much more intricate notion, in general. For instance,

spherical tuples in the class B1(B
d), introduced by Cowen and Douglas in the

very influential paper [9], are necessarily joint weighted shifts. On the other

hand, the structure of K-homogeneous operator tuples in B1(Ω), where Ω is a

bounded symmetric domain of rank > 1, is much more complex. In particular,

they are not joint weighted shifts. Also, recall that the commuting operator

tuples T = (T1, . . . , Td) such that T and g(T ) are unitarily equivalent for all g

in G, called homogeneous tuples, have been studied extensively over the past

few years, see [22], [23], [18]. In the case of an open unit disc D, all homo-

geneous operators in B1(D) were classified by Misra in [21]. As a corollary of

his abstract classification theorem, Wilkins provided an explicit model for all

homogeneous operators in B2(D); see [31]. Later in 2011, using techniques from

complex geometry and representation theory, a complete classification of homo-

geneous operators in the Cowen–Douglas class Bn(D) was obtained by Misra

and Korányi in [17]. Homogeneous operators on an irreducible bounded sym-

metric domain of type I, discussed below, were studied by Misra and Bagchi

in [6]. Later in [2], their results were generalized for an arbitrary irreducible

bounded symmetric domain by Arazy and Zhang. A comparison of the class of

d-tuples of homogeneous operators with K-homogeneous operator tuples might

reveal interesting connections with the inducing construction, which we intend

to study in future.

Every irreducible bounded symmetric domain Ω of rank r can be realized as

an open unit ball of a Cartan factor Z = Cd. For a fixed frame e1, . . . , er of

pairwise orthogonal minimal tripotents, let

Z =
∑

0≤i≤j≤r

Zij

be the joint Peirce decomposition of Z (see [29, p. 57]). Note that Z00 = {0}
and Zii = Cei for all i = 1, . . . , r. Moreover,

a := dimZij , 1 ≤ i < j ≤ r

is independent of i, j and

b := dimZ0j , 1 ≤ j ≤ r
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is independent of j. The parameters a, b are known to be the characterstic

multiplicities of Z and the numerical invariants (r, a, b) determine the do-

main Ω uniquely up to biholomorphic equivalence (see [1]). The dimension d is

related to the numerical invariants (r, a, b) as follows:

d = r +
a

2
r(r − 1) + rb.

According to the classification due to É. Cartan [7], there are six types of

irreducible bounded symmetric domains up to biholomorphic equivalence (see

also [20]). The first four types of these domains are called the classical Cartan

domains, while the other two types are known as the exceptional domains. In

what follows, we consider only the classical domains, that is, an irreducible

bounded symmetric domain of one of the following four types:

(i) Type I: n × m (m ≥ n) complex matrices z with ‖z‖ < 1. These

domains are determined by the numerical invariants (n, 2,m− n).

(ii) Type II: symmetric complex matrices z of order n with ‖z‖ < 1. In

this case, the numerical invariants (n, 1, 0) are complete biholomorphic

invariant.

(iii) Type III: anti-symmetric complex matrices z of order n with ‖z‖ < 1.

Here r = [n2 ], a = 4 and b = 0 if n is even and b = 2 if n is odd.

(iv) Type IV (the Lie ball): all z ∈ Cd (d ≥ 5) such that 1+| 12ztz|2 > ztz

and ztz < 2, where zt is the complex conjugate of the transpose zt. The

numerical invariants (2, d − 2, 0) are complete biholomorphic invariant

for these domains.

Throughout the paper, let N0 denote the set of all non-negative integers. Let P

be the space of all analytic polynomials on Z, and let Pn, n ∈ N0, denote the

subspace of P consisting of all homogeneous polynomials of degree n. Clearly,

as a vector space, P can be written as the direct sum
∑∞

n=0 Pn. The group K

acts on the space P by composition, that is,

(k · p)(z) = p(k−1z), k ∈ K, p ∈ P.

Below we describe the irreducible components of this action. An r-tuple

s = (s1, . . . , sr) is called a signature if s1 ≥ · · · ≥ sr ≥ 0. Let
−→
N r

0 denote the

set of all signatures. For all s ∈ −→
N r

0, we associate the conical polynomial Δs,

see [29, p. 128] for the definition, where

Δs(z) = Δs1−s2
1 (z) · · ·Δsr−1−sr

r−1 (z)Δsr
r (z)
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and the polynomial space Ps is the linear span of {Δs ◦ k : k ∈ K}. It is known
that the polynomial spaces {Ps}s∈−→

N r
0
are precisely the K-invariant, irreducible

subspaces of P which are mutually K-inequivalent, and

P =
∑
s∈−→

N r
0

Ps.

The Fischer–Fock inner product on P, defined by

〈p, q〉F :=
1

πd

∫
Cd

p(z)q(z)e−|z|2dm(z),

is K-invariant. The reproducing kernel of the space Ps with respect to the

Fischer–Fock inner product is denoted by Ks(z,w). Note that Ks is K-invariant

and ∑
s∈−→

N r
0

Ks(z,w) = ez·w.

Further, any K-invariant Hilbert space H of analytic functions on Ω has the

decomposition

H =
⊕
s∈−→

N r
0

Ps.

This decomposition is called Peter–Weyl decomposition [28].

Let T = (T1, . . . , Td) be a commuting d-tuple of bounded linear operators

acting on a complex separable Hilbert space H. Also, let

DT : H → H ⊕ · · · ⊕H

be the operator

DTh := (T1h, . . . , Tdh), h ∈ H.

We note that

kerDT =
d⋂

i=1

kerTi

is the joint kernel and

σp(T ) = {w ∈ C
d : kerDT−wI �= 0}

is the joint point spectrum of the d-tuple T = (T1, . . . , Td). Throughout this

paper we will study a class of K-homogeneous d-tuples, which is defined below.
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Definition 1.2: A commuting d-tuple of K-homogeneous operators T possessing

the following properties

(i) dimkerDT ∗ = 1,

(ii) any non-zero vector e in kerDT ∗ is cyclic for T ,

(iii) Ω ⊆ σp(T
∗),

is said to be in the class AK(Ω).

In this paper, we provide a concrete model for all the commuting d-tuples T

(which are necessarily K-homogeneous) in the class AK(Ω) as multiplication

by the coordinate functions z1, . . . , zd on a reproducing kernel Hilbert space of

holomorphic functions HK defined on Ω. We describe the kernel K in terms of

the K-invariant kernels Ks of the spaces Ps.

Having described the model, we obtain a criterion for boundedness of these

operators. Using this criterion, we determine which d-tuple of multiplication

operators on the weighted Bergman spaces are bounded. The boundedness

criterion for the multiplication operators on the weighted Bergman spaces has

appeared before in [6] and [2].

We also obtain a criterion for the adjoint of the d-tuple of operators in AK(Ω)

to be in the Cowen–Douglas class B1(Ω0) for some neighbourhood Ω0 ⊂ Ω

of 0 ∈ Ω. In case of weighted Bergman spaces H(ν), we prove that the adjoint

of the d-tuple of multiplication operators by the coordinate functions are in the

Cowen–Douglas class B1(Ω).

For any T in the class AK(Ω), we point out that the operators
∑d

i=1 T
∗
i Ti

and
∑d

i=1 TiT
∗
i restricted to the subspace Ps are scalar times the identity. In

particular, for the weighted Bergman spaces H(ν), [2, Proposition 4.4] provides

an explicit form for the operator
∑d

i=1 TiT
∗
i . We extend this formula for any T

in the class AK(Ω). Moreover, for the Hardy space of the Shilov boundary S

of Ω, we show that
∑d

i=1 M
∗
i Mi is the rank times identity, see also [5]. Also,

for any T in AK(Ω), we have computed the operator
∑d

i=1 T
∗
i Ti on certain sub-

spaces of H, and as a consequence, it is shown that the commutators [M∗
i ,Mi],

i = 1, . . . , d, on the weighted Bergman spaces are compact if and only if r = 1.

For any domain Ω of rank 2, we obtained an explicit description of the opera-

tor
∑d

i=1 T
∗
i Ti and conjectured the form of this operator for a domain of any

rank r > 2. This conjecture was proved by Upmeier; see [30].

Finally, we study the question of unitary equivalence and similarity of d-tuples

of operators in the class AK(Ω).



338 S. GHARA, S. KUMAR AND P. PRAMANICK Isr. J. Math.

2. Model for operators in AK(Ω)

We begin this section by providing a well known family of examples, namely, the

d-tuple of multiplication by the coordinate functions on the weighted Bergman

spaces, which belongs to the class AK(Ω).

For ν ∈ {0, . . . , a
2 (r−1)}∪ (a2 (r−1),∞), the so-called Wallach set of Ω (see

[14]), consider the weighted Bergman kernel

K(ν)(z,w) =
∑
s

(ν)sKs(z,w), z,w ∈ Ω,

where (ν)s is the generalized Pochhammer symbol

(ν)s :=
r∏

j=1

(
ν − a

2
(j − 1)

)
sj

=
r∏

j=1

sj∏
l=1

(
ν − a

2
(j − 1) + l − 1

)
.

Let H(ν) denote the weighted Bergman space of holomorphic functions on Ω

determined by the reproducing kernel K(ν). If ν = d
r and ν = a

2 (r − 1) + d
r ,

then the weighted Bergman spaces H(ν) coincide with the Hardy space H2(S)

over the Shilov boundary S of Ω and the classical Bergman space A2(Ω)

respectively. For ν > a
2 (r − 1), the multiplication d-tuple

M (ν) = (M
(ν)
1 , . . . ,M

(ν)
d )

onH(ν) is bounded and homogeneous (cf. [6], [2]). One can also verify thatM (ν)

is in AK(Ω). Replacing (ν)s by any arbitrary positive number as with some

boundedness condition, we get a large class of operator tuples in AK(Ω) and

we prove that upto unitary equivalence every operator tuple in AK(Ω) is of this

form.

To facilitate the study of K-homogeneous operators, we recall the following

result from [1] describing all the K-invariant kernels on Ω.

Proposition 2.1 (Proposition 3.4, [1]): For any K-invariant semi-inner prod-

uct 〈·, ·〉 on the the space of polynomials P, the following statements hold:

(i) Ps is orthogonal to Ps′ whenever s �= s′.
(ii) There exists a constant bs ≥ 0 associated to each s ∈ −→

N r
0 such that

〈p, q〉 = bs〈p, q〉F, for all p, q ∈ Ps.

(iii) bs > 0 for all s ∈ −→
N

r
0 if and only if 〈·, ·〉 is an inner product.
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(iv) If the evaluation map at each point of Ω is continuous on (P, 〈·, ·〉), then
the completion H of (P, 〈·, ·〉) is a reproducing kernel Hilbert space.

Moreover, the kernel K(z,w) is of the form

K(z,w) =
∑
s∈−→

N r
0

b−1
s Ks(z,w),

where convergence is both uniformly on compact subsets of Ω× Ω and

in norm.

The following result is a generalization of [8, Lemma 2.10] which is necessary

for the proof of Theorem 2.3 giving a model for commuting a d-tuple of operators

in the class AK(Ω).

Lemma 2.2: Let T = (T1, . . . , Td) be a K-homogeneous d-tuple of commuting

operators on H. Suppose that kerDT ∗ is one-dimensional and is spanned by a

vector e ∈ H which is cyclic for T . Then there exists a sequence {as}s∈−→
N r

0
of

non-negative real numbers such that for any polynomial p ∈ P,

(2.2) ||p(T )e||2H =

deg p∑
k=0

∑
|s|=k

as‖ps‖2F,

where deg p is the degree of p and

p =

deg p∑
k=0

∑
|s|=k

ps

is the Peter–Weyl decomposition.

Proof. Since T is K-homogeneous, for each k ∈ K there exists a unitary opera-

tor Γ(k) on H such that

TjΓ(k) = Γ(k)kj(T ), j = 1, . . . , d.

Hence

T ∗
j Γ(k) = Γ(k)kj(T )∗, j = 1, . . . , d.

Since kj(T ) is a linear combination of T1, . . . , Td and e ∈ kerDT ∗ , it follows

that Γ(k)e belongs to kerDT ∗ for all k ∈ K. Furthermore, since kerDT ∗ is

one-dimensional and spanned by e, we obtain that

Γ(k)e = η(k)e
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for some η(k) such that |η(k)| = 1. We now define a semi-inner product on Ps

for all s ∈ −→
N r

0 by the formula

〈ps, qs〉Ps := 〈ps(T )e, qs(T )e〉H, ps, qs ∈ Ps.

Now for any k ∈ K we have

〈ps(k · z), qs(k · z)〉Ps = 〈ps(k · T )e, qs(k · T )e〉H
= 〈Γ(k)∗ps(T )Γ(k)e,Γ(k)∗qs(T )Γ(k)e〉H
= 〈ps(T )Γ(k)e, qs(T )Γ(k)e〉H
= 〈ps(T )η(k)e, qs(T )η(k)e〉H
= |η(k)|2〈ps(T )e, qs(T )e〉H
= 〈ps(T )e, qs(T )e〉H
= 〈ps, qs〉Ps .

So 〈·, ·〉Ps is a K-invariant semi-inner product on Ps for each s. Therefore, on P,

〈p, q〉 :=
�∑

k=0

∑
|s|=k

〈ps, qs〉Ps ,

where p and q have the Peter–Weyl decomposition

deg p∑
k=0

∑
|s|=k

ps and

deg q∑
k=0

∑
|s|=k

qs

respectively and � = min{deg p, deg q}, defines a K-invariant semi-inner prod-

uct. Thus by Proposition 2.1, there exists a sequence of non-negative real

numbers as such that

〈p, q〉 =
�∑

k=0

∑
|s|=k

as〈ps, qs〉F.

This completes the proof.

For all the classical bounded symmetric domains, it can be easily verified that

Ω = {w ∈ C
d : w ∈ Ω}.

Consequently, in the following theorem, the Hilbert space that we construct

consists of holomorphic functions on Ω rather than {w ∈ C
d : w ∈ Ω}. The

next result provides an analytic model for any d-tuple of operators T in AK(Ω).
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Theorem 2.3: If T is a d-tuple of operators in AK(Ω), then T is unitarily

equivalent to a d-tuple M = (M1, . . . ,Md) of multiplication by the coordinate

functions z1, . . . , zd on a reproducing kernel Hilbert space HK of holomorphic

functions defined on Ω with K(z,w) =
∑

a−1
s Ks(z,w) for all z,w ∈ Ω, for

some choice of positive real numbers as with a0 = 1.

Proof. Since Ω ⊆ σp(T
∗), for each w ∈ Ω there exists a non-zero vector x ∈ H,

such that T ∗
j x = w̄jx for all j = 1, . . . , d. Thus for any polynomial p ∈ P, we

have p(T ∗)x = p(w)x. Let e ∈ kerDT ∗ be a cyclic vector for T of norm 1.

Then

p(w)〈e, x〉H = 〈e, p(w)x〉H = 〈e, p̄(T ∗)x〉H = 〈p(T )e, x〉H,

where p̄(z) = p(z̄), z ∈ Ω. Since x �= 0 and e is cyclic for T , we get 〈e, x〉H �= 0

and

|p(w)| ≤ ‖p(T )e‖H‖x‖H
|〈e, x〉H| .

Thus it follows that evaluation at w ∈ Ω is bounded and therefore, the semi-

inner product defined by the rule 〈p, q〉Ps = 〈p(T )e, q(T )e〉H is an inner prod-

uct on each Ps. This gives rise to an inner product 〈·, ·〉 on the space of polyno-

mials P. The sequence {as}s∈−→
N r

0

of Lemma 2.2, using Proposition 2.1(iii), is now

evidently positive. Moreover, since ‖e‖ = 1, it follows from (2.2) that a0 = 1.

Thus, by Proposition 2.1(iv), the completion of (P, 〈·, ·〉), say HK , is a repro-

ducing kernel Hilbert space, where

K(z,w) =
∑

a−1
s Ks(z,w), z,w ∈ Ω.

Clearly, the map p �→ p(T )e extends to a unitary from HK to H, which inter-

twines T with the multiplication d-tuple M = (M1, . . . ,Md) on HK .

If T is a K-homogeneous d-tuple of operators, then, in general, the map

k �→ Γ(k) of (1.1) need not be a homomorphism. The next proposition assures

that if T is in the class AK(Ω), then there exists a choice of Γ(k) for which the

map k �→ Γ(k) is a homomorphism.

Proposition 2.4: If T is a d-tuple of operators in AK(Ω), then there exists a

unitary representation Γ : K → U(H) such that

TΓ(k) = Γ(k)(k · T ).
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Proof. By Theorem 2.3, T is unitarily equivalent to the d-tuple

M = (M1, . . . ,Md) of multiplication operators on a reproducing kernel Hilbert

space HK of holomorphic functions defined on Ω with a kernel K(z,w) which

is K-invariant. Clearly, the map Γ on HK given by Γ(k)(f) = f ◦ k−1(·) is a

unitary representation of K satisfying the intertwining condition.

Remark 2.5: Since K is a subgroup of the group U(d) of unitary linear trans-

formations on Cd, every spherical d-tuple T = (T1, . . . , Td) is K-homogeneous.

Conversely, a K-homogeneous d-tuple of Theorem 2.3 is spherical if and only

if as = as′ for all s, s
′ ∈ −→

N r
0 with |s| = |s′|.

Remark 2.6: We also point out that, by the spectral mapping theorem, the

Taylor joint spectrum σ(T ) of a K-homogeneous operator T is K-invariant,

that is, if w belongs to σ(T ), then k.w also belongs to σ(T ) for all k ∈ K.

3. Boundedness of the multiplication tuple

Throughout the rest of the paper, let K(a) : Ω × Ω → C denote the kernel

function given by the formula K(a)(z,w) =
∑

s asKs(z,w), z,w ∈ Ω, for some

choice of positive real numbers as. The positivity of the sequence as ensures

that K(a) is a positive definite kernel. Thus it determines a unique Hilbert

space H(a) ⊆ Hol(Ω) with the reproducing property:

〈f,K(a)(·,w)〉 = f(w), f ∈ H(a), w ∈ Ω.

It follows from Proposition 2.1 that the polynomial ring P is dense in H(a)

and Ps is orthogonal to Ps′ whenever s �= s′, that is, H(a) =
⊕

s∈−→
N r

0

Ps. In this

section, we discuss the boundedness of the d-tuple M (a) := (M
(a)
1 , . . . ,M

(a)
d )

of multiplication by the coordinate functions z1, . . . , zd on H(a). We begin with

the following basic lemma, which is surely known to the experts, but we provide

a proof for the sake of completeness.

Lemma 3.1: The operators

d∑
i=1

M
(a)
i

∗
M

(a)
i and

d∑
i=1

M
(a)
i M

(a)
i

∗
,

acting onH(a), are block diagonal with respect to the decomposition
⊕

s∈−→
N r

0

Ps,

where each block is a non-negative scalar multiple of the identity operator.
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Proof. It is enough to give the proof for the operator
∑d

i=1 M
(a)
i

∗
M

(a)
i since the

proof for the operator
∑d

i=1 M
(a)
i M

(a)
i

∗
follows in exactly the same way. First,

note that

Γ(k)∗M (a)
i Γ(k) = M

(a)
zi◦k−1 for k ∈ K.

Let e1, . . . , ed be the standard basis vectors in Cd. Note that

M
(a)
zi◦k−1 =

d∑
j=1

〈k−1ej, ei〉M (a)
j .

In consequence, we have

Γ(k)∗
( d∑

i=1

M
(a)
i

∗
M

(a)
i

)
Γ(k) =

d∑
i=1

Γ(k)∗M (a)
i

∗
Γ(k)Γ(k)∗M (a)

i Γ(k)

=

d∑
i=1

M
(a)

zi◦k−1

∗
M

(a)

zi◦k−1

=

d∑
i=1

d∑
p,q=1

〈ei, k−1ep〉〈k−1eq, ei〉M (a)
p

∗
M (a)

q

=

d∑
p,q=1

〈k−1eq, k
−1ep〉M (a)

p

∗
M (a)

q

=
d∑

i=1

M
(a)
i

∗
M

(a)
i .

Here the last equality follows from the fact that the subgroup K is contained in

the group U(d) of unitary linear transformations on C
d. Since {Ps}s∈−→

N r
0

are K-

irreducible, mutually K-inequivalent subspaces of H(a) and H(a) =
⊕

s∈−→
N r

0
Ps,

the conclusion follows from Schur’s lemma.

For any s in
−→
N r

0, let I
+(s) and I−(s) denote the sets given by

I+(s) := {j : 1 ≤ j ≤ r, s+ εj ∈ −→
N

r
0},

I−(s) := {j : 1 ≤ j ≤ r, s− εj ∈ −→
N

r
0}.

Further, in the remaining portion of this paper, we set

cs(j) =
∏
k 	=j

sj − sk +
a
2 (k − j + 1)

sj − sk +
a
2 (k − j)

, j = 1, . . . , r,
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and

c′s(j) =
∏
k 	=j

sj − sk +
a
2 (k − j − 1)

sj − sk +
a
2 (k − j)

, j = 1, . . . , r.

If j ∈ I+(s), then it is easy to see that cs(j) > 0. Otherwise, cs(j) = 0.

Similarly, if j ∈ I−(s), then c′s(j) > 0. Otherwise, c′s(j) = 0 for 1 ≤ j ≤ r − 1

and c′s(r) > 0.

The following lemma, which describes the operator
∑d

i=1 M
(a)
i M

(a)
i

∗
, gener-

alizes a known result [2, Proposition 4.4] for the weighted Bergman spaces.

Lemma 3.2: For f ∈ Ps, we have

d∑
i=1

M
(a)
i M

(a)
i

∗
f = τ(s)f,

where

τ(s) =

⎧⎨
⎩
∑

j∈I−(s)

as−εj

as

( d
r )s

( d
r )s−εj

a
2 (r−j)+sj

b+ a
2 (r−j)+sj

c′s(j) if s �= 0,

0 if s = 0.

The proof of the preceding lemma is very similar to the proof of [2, Proposi-

tion 4.4] and therefore it is omitted.

For any finite set A, let |A| denote the cardinality of A.

Lemma 3.3: For any fixed but arbitrary s ∈ −→
N r

0, we have

r∑
j=1

c′s(j) =
r∑

j=1

cs(j) = r.

Proof. Evidently, we have

r∑
j=1

c′s(j) =
r∑

j=1

∏
k 	=j

sj − sk +
a
2 (k − j − 1)

sj − sk + a
2 (k − j)

=

r∑
j=1

∏
k 	=j

(
1−

a
2

sj − sk + a
2 (k − j)

)

=

r∑
j=1

∏
k 	=j

(
1−

a
2

(sj − a
2 j)− (sk − a

2k)

)
.
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Setting s′j =
sj− a

2 j
a
2

, we see that s′1 > s′2 > · · · > s′r, and

r∑
j=1

c′s(j) =
r∑

j=1

∏
k 	=j

(
1− 1

s′j − s′k

)

= r +
r∑

j=1

∑
A⊆{1,...,j−1,j+1,...,r}

A 	=φ

(−1)|A| ∏
k∈A

1

s′j − s′k

= r +
∑

A⊆{1,...,r}
|A|≥2

(−1)|A|−1
∑
j∈A

∏
k∈A
k 	=j

1

s′j − s′k
.

Now, by [6, Corollary 2.3], it follows that

∑
j∈A

∏
k∈A
k 	=j

1

s′j − s′k
= 0

for all A ⊆ {1, . . . , r} with |A| ≥ 2. Therefore,
∑r

j=1 c
′
s(j) = r. The proof of

the other part follows in exactly the same way.

Theorem 3.4: The d-tuple M (a) = (M
(a)
1 , . . . ,M

(a)
d ) of multiplication opera-

tors on H(a) is bounded if and only if

A := sup
{as−εj

as

(dr )s

(dr )s−εj

: s, s− εj ∈ −→
N

r
0, j = 1, . . . , r

}

is finite.

Proof. Clearly, the multiplication d-tuple M (a) on H(a) is bounded if and only

if the operator
∑d

i=1 M
(a)
i M

(a)
i

∗
is bounded. Therefore, using Lemma 3.2, it is

enough to show that τ(s) is bounded for all s ∈ −→
N r

0 if and only if A is finite.

First assume that A is finite. Then

τ(s) =
∑

j∈I−(s)

as−εj

as

(dr )s

(dr )s−εj

a
2 (r − j) + sj

b+ a
2 (r − j) + sj

c′s(j)

≤ A

r∑
j=1

a
2 (r − j) + sj

b+ a
2 (r − j) + sj

c′s(j)

≤ A

r∑
j=1

c′s(j)

= Ar
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for any s ∈ −→
N r

0. Here, the last equality follows from Lemma 3.3. To prove

the other direction, assume that τ(s) is bounded, that is, τ(s) ≤ B for some

positive real number B and for all s ∈ −→
N r

0. Thus

as−εj

as

(dr )s

(dr )s−εj

a
2 (r − j) + sj

b+ a
2 (r − j) + sj

c′s(j) ≤ τ(s) ≤ B, j ∈ I−(s).

Now, note that if j ∈ I−(s), then

(3.3)

1

c′s(j)
=

∏
k 	=j

sj − sk +
a
2 (k − j)

sj − sk +
a
2 (k − j − 1)

=
∏
k<j

sj − sk +
a
2 (k − j)

sj − sk +
a
2 (k − j − 1)

∏
k>j

sj − sk + a
2 (k − j)

sj − sk +
a
2 (k − j − 1)

≤
∏
k>j

sj − sk +
a
2 (k − j)

sj − sk +
a
2 (k − j − 1)

≤
∏
k>j

sj − sk +
a
2 (k − j)

sj − sk

≤
∏
k>j

(1 +
a
2 (k − j)

sj − sk
)

≤
(
1 +

a

2
(r − 1)

)r

.

Here the third inequality holds since
sj−sk+

a
2 (k−j)

sj−sk+
a
2 (k−j−1) ≤ 1 for k < j. Now, it

follows that

as−εj

as

(dr )s

(dr )s−εj

≤ B

c′s(j)
b+ a

2 (r − j) + sj
a
2 (r − j) + sj

≤ B
(
1 +

a

2
(r − 1)

)r

(1 + b).

This completes the proof.

Corollary 3.5: The multiplication d-tuple M (ν) on H(ν) is bounded if

ν >
a

2
(r − 1).

Proof. If ν > a
2 (r − 1), then

(ν)s−εj

(ν)s

(dr )s

(dr )s−εj

=
d
r − a

2 (j − 1) + sj − 1

ν − a
2 (j − 1) + sj − 1

≤ max
{
1,

1 + b

ν − a
2 (r − 1)

}
.

Therefore, from Theorem 3.4, it follows that M (ν) is bounded.
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Having (a) determined the condition for boundedness of the operator M (a),

(b) noting that each w in Ω is a joint eigenvalue for the multiplication d-

tuple M (a)∗ and finally since the constant vector 1 is cyclic for M (a), it is

natural to investigate the question of which of these are in the Cowen–Douglas

class B1(Ω); see [9], [10] for the definition of this very important class of op-

erators. As shown in [12, p. 285], the cyclicity implies that the dimension of

the joint eigenspace at each w in Ω is 1. Thus to determine the membership in

the Cowen–Douglas class in a neighbourhood of the origin contained in Ω, we

only need to find when ranDM(a)∗ is closed. The following theorem provides

the precise condition for this.

Theorem 3.6: For a multiplication d-tuple M (a) = (M
(a)
1 , . . . ,M

(a)
d ) on H(a),

ranDM(a)∗ is closed if and only if

B := inf

{ ∑
j∈I−(s)

as−εj

as

(dr )s

(dr )s−εj

: s ∈ −→
N

r
0

}

is non-zero positive.

Proof. It is elementary to see that ranDM(a)∗ is closed if and only if

d∑
i=1

M
(a)
i M

(a)
i

∗

is bounded below on (kerDM(a)∗)⊥. Also, for the d-tuple M (a) on H(a), we

have kerDM(a)∗ = P0, the space of constant functions. Therefore, in view

of Lemma 3.2, it suffices to show that B is non-zero positive if and only

if inf{τ(s) : s �= 0, s ∈ −→
N r

0} is non-zero positive. Suppose that B is a non-zero

positive number. Now, for any non-zero s ∈ −→
N r

0, we have

τ(s) =
∑

j∈I−(s)

as−εj

as

(dr )s

(dr )s−εj

a
2 (r − j) + sj

b+ a
2 (r − j) + sj

c′s(j)

≥ 1

b+ 1

∑
j∈I−(s)

as−εj

as

(dr )s

(dr )s−εj

c′s(j)

≥ 1

b+ 1

∑
j∈I−(s)

as−εj

as

(dr )s

(dr )s−εj

1

(1 + a
2 (r − 1))r

≥ B

(b+ 1)(1 + a
2 (r − 1))r

.
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Here the third inequality follows from (3.3). Conversely, assume that

inf{τ(s) : s �= 0, s ∈ −→
N r

0} is a non-zero positive number, say C. Thus for

each non-zero s ∈ −→
N r

0,

(3.4)
∑

j∈I−(s)

as−εj

as

(dr )s

(dr )s−εj

a
2 (r − j) + sj

b+ a
2 (r − j) + sj

c′s(j) ≥ C.

Hence, noting that c′s(j) ≤ r by Lemma 3.3 and
a
2 (r−j)+sj
b+ a

2 (r−j) ≤ 1, it follows that

∑
j∈I−(s)

as−εj

as

(dr )s

(dr )s−εj

≥ C

r
.

Corollary 3.7: The range of DM(ν)∗ is closed if ν > a
2 (r − 1).

Proof. Suppose ν = a
2 (r − 1) + ε for some ε > 0. Then

∑
j∈I−(s)

(ν)s−εj

(ν)s

(dr )s

(dr )s−εj

=
∑

j∈I−(s)

b+ a
2 (r − j) + sj

a
2 (r − j) + sj + ε− 1

which is always bounded below by 1 if ε ≤ b + 1. On the other hand, for

ε ≥ b + 1, it is bounded below by 1
ε . Hence, by Theorem 3.6, ranDM(ν)∗ is

closed.

Now, we wish to show that the adjoint M (ν)∗ of the d-tuple of multiplication

operators on H(ν) is in the Cowen–Douglas class B1(Ω) for ν > a
2 (r − 1).

Recall that the left essential spectrum π�,0
e (T ) of a commuting d-tuple of

operators T is defined to be the complement of the set of all w ∈ Cd with the

property:

(1) dimkerD(T−wI) is finite,

(2) ranD(T−wI) is closed.

If 0 �∈ π�,0
e (T ), then the d-tuple T is said to be left semi-Fredholm.

The essential ingredient of the proof of the following theorem is based on

the spectral mapping property of the left essential spectrum, which appears in

[13] and was pointed out to G. Misra by J. Eschmeier during a conversation at

University of Saarbrucken in February 2014.

Theorem 3.8: The adjoint M (ν)∗ of the multiplication d-tuple on H(ν) is in

the Cowen–Douglas class B1(Ω) whenever ν > a
2 (r − 1).
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Proof. Since the set of polynomials is dense in the Hilbert space H(ν), it follows

that dimkerDM(ν)∗ is 1. By Corollary 3.7, we also have that ran DM(ν)∗ is

closed. Therefore, DM(ν)∗ is left semi-Fredholm and hence there is a ε > 0

such that for w ∈ Ω with
∑d

i=1 |wi|2 < ε, the operators D(M−wI)∗ are left

semi-Fredholm. Thus M (ν)∗ is in the Cowen–Douglas class B1(Ωε), where

Ωε =

{
w ∈ Ω :

d∑
i=1

|wi|2 < ε

}
.

Now, using the homogeneity of M (ν) and the spectral mapping property of the

left essential spectrum, we show that M (ν)∗ is actually in B1(Ω).

To complete the proof, first note that ifw ∈ Ω is any fixed but arbitrary point,

then there exists a biholomorphic automorphism ϕ of Ω with the property:

ϕ(0) = w. We have seen that 0 �∈ π�,0
e (M (ν)∗). An analytic spectral mapping

property for the left essential spectrum is ensured by [13, Corollary 2.6.9]. It

follows that

w = ϕ(0) �∈ ϕ(π�,0
e (M (ν)∗)) = π�,0

e (ϕ(M (ν)∗)) = π�,0
e (M (ν)∗).

Here the last equality follows from the homogeneity assumption.

4. Computation of the operator
∑

M∗
i Mi on H(a)

In this section, we wish to compute the operator

M (a)∗M (a) :=
d∑

i=1

M
(a)
i

∗
M

(a)
i

on the Hilbert spaceH(a). First, we note that the bounded symmetric domain Ω

sits inside a linear space of dimension d in its Harish-Chandra realization. The

type I domains are realized as the open unit ball, with respect to the operator

norm, in the linear space of n×m matrices. The situation becomes somewhat

different when we consider domains of type II. Pick one of these domains of

dimension n(n+1)
2 . It is convenient to put n(n+1)

2 variables in the form of a

symmetric matrix, where the inner product is given by tr(AB∗). Now, in the

space of these symmetric matrices of size n, the matrices Eii, i = 1, . . . , n

together with
Eij+Eji√

2
, 1 ≤ i �= j ≤ n, form an orthonormal basis. Consequently,

the coordinates of this domain is of the form

z11,
√
2z12, . . . ,

√
2z1n, z22 . . .

√
2z2n, . . . , zn−1n−1,

√
2zn−1n, znn,
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see [16, p. 130]. One may pick coordinates similarly for the type III domains

consisting of the n×n anti-symmetric matrices of norm at most 1. Finally, the

type IV domains, in its Harish-Chandra realization, are described in [24, p. 76]:

{
z := (z1, . . . , zd) :

d∑
i=1

|zi|2 < 2 and
d∑

i=1

|zi|2 < 1 +

∣∣∣∣12
d∑

i=1

z2i

∣∣∣∣
2}

.

The following theorem appears in [5] in a slightly different form. The differ-

ence arises since we take the multiplication by the coordinate functions to be

the ones described in the previous paragraph, while in the paper [5], these are

the usual coordinates. Thus it makes no difference in the case of the type I

domains, while for the other domains, the answer is different.

Theorem 4.1: Let M (S) = (M
(S)
1 , . . . ,M

(S)
d ) be the d-tuple of multiplication

operators by the coordinate functions z1, . . . , zd on the Hardy space H2(S).

Then

(4.5)

d∑
i=1

M
(S)
i

∗
M

(S)
i = rI.

By Lemma 3.1, note that M (a)∗M (a) is a block diagonal operator with re-

spect to the decomposition
⊕

Ps, where each block is a non-negative scalar

multiple of the identity, that is,

M (a)∗M (a)p = δ(s)p, p ∈ Ps

for some non-negative real number δ(s). Therefore, in order to compute the

operator M (a)∗M (a), it is sufficient to obtain the constants δ(s) for all s in
−→
N r

0.

Unfortunately, we are only able to find δ(s) when s ∈ −→
N r

0 and |I+(s)| ≤ 2. In

particular, we have the complete answer in case the rank r = 2.

The following lemma gives a description of the operator M
(a)
i

∗
on H(a). In

case of weighted Bergman spaces, it is described in [29, Lemma 4.12.19].

For any polynomial p and s ∈ −→
N r

0, the Peter–Weyl component of p in Ps is

denoted by (p)s.

Lemma 4.2: If s ∈ −→
N r

0 and p is a polynomial in Ps, then

M
(a)
i

∗
p =

∑
j∈I−(s)

as−εj

as
(∂ip)s−εj ,

where ∂i denotes the partial derivative with respect to the variable zi.
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Proof. By [29, Theorem 4.11.86], we have that ziPs is contained in

⊕
j∈I+(s)

Ps+εj .

Thus, for any polynomial p in Ps, it follows thatM
∗
i p belongs to

⊕
j∈I−(s) Ps−εj .

Now for j ∈ I−(s) and q ∈ Ps−εj , we have

〈M∗
i p, q〉H(a) = 〈p, ziq〉H(a) = 〈p, (ziq)s〉H(a)

=
1

as
〈p, (ziq)s〉F

=
1

as
〈p, ziq〉F

=
1

as
〈∂ip, q〉F

=
1

as
〈(∂ip)s−εj , q〉F

=
as−εj

as
〈(∂ip)s−εj , q〉H(a) .

Here the equality

〈p, ziq〉F = 〈∂ip, q〉F

follows from [29, Proposition 4.11.36]. This completes the proof.

The following theorem describes the operator M (a)∗M (a) on some subspace

of H(a).

Theorem 4.3: Let s ∈ −→
N r

0 be such that |I+(s)| ≤ 2. Then

M (a)∗M (a)p = δ(s)p, p ∈ Ps,

where

(4.6) δ(s) =
∑

j∈I+(s)

as

as+εj

(dr )s+εj

(dr )s
cs(j).
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Proof. First note that, for p ∈ Ps, we have

d∑
i=1

M
(a)
i

∗
M

(a)
i p =

d∑
i=1

M
(a)
i

∗
(zip) =

d∑
i=1

(
M

(a)
i

∗
( ∑

j∈I+(s)

(zip)s+εj

))
s

=
d∑

i=1

( ∑
j∈I+(s)

as

as+εj

∂i((zip)s+εj )

)
s

=
∑

j∈I+(s)

as

as+εj

d∑
i=1

(∂i((zip)s+εj ))s,

where the third equality follows from Lemma 4.2. Let Qj be the linear map

on Ps given by

Qj(p) =

⎧⎨
⎩
∑d

i=1(∂i((zip)s+εj ))s, if j ∈ I+(s),

0, otherwise.

Then clearly,

(4.7) δ(s)p =
∑

j∈I+(s)

as

as+εj

Qj(p).

Note that, for p ∈ Ps, Qj satisfies the following:

∑
j∈I+(s)

Qj(p) =

d∑
i=1

∑
j∈I+(s)

(∂i((zip)s+εj ))s =

d∑
i=1

(
∂i

( ∑
j∈I+(s)

(zip)s+εj

))
s

=

d∑
i=1

(∂i(zip))s

= dp+

d∑
i=1

(zi∂ip)s.

Therefore, by Euler’s formula, we obtain

(4.8)
∑

j∈I+(s)

Qj(p) = (d+ |s|)p.

Now, assume that |I+(s)| = 1. Then s is necessarily of the form (s1, 0, . . . , 0)

and I+(s) = {1}. Thus it follows easily from (4.7) and (4.8) that

δ(s) =
as

as+ε1

r
(d
r
+ s1

)
.
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To complete the proof, assume that |I+(s)| = 2. Then I+(s) = {1, k}, where
2 ≤ k ≤ r. Note that by (4.7) and Theorem 4.1, we have

(4.9)
(d
r )s

(dr )s+ε1

Q1(p) +
(dr )s

(dr )s+εk

Qk(p) = rp.

By solving equations (4.8) and (4.9), it is easily verified that

Q1(p) =
(k − 1)(dr + s1)(s1 − sk +

ar
2 )

(s1 − sk + a
2 (k − 1))

p,

and

Qk(p) =
(r − k + 1)(dr − a

2 (k − 1) + sk)(s1 − sk)

(s1 − sk +
a
2 (k − 1))

p.

Now, the proof is completed by (4.7).

As an immediate consequence of Theorem 4.3, we obtain the following corol-

lary giving the complete form of the operator M (a)∗M (a) on H(a) when the

domain Ω is of rank 2.

Corollary 4.4: Let Ω be an irreducible bounded symmetric domain of rank 2.

Then, for any polynomial p in Ps, M
(a)∗M (a)p = δ(s)p, where

δ(s) =
∑

j∈I+(s)

as

as+εj

(dr )s+εj

(dr )s
cs(j).

As a consequence of Theorem 4.3, we also obtain the following corollary

about the essential normality of the multiplication operators by the coordinate

functions on the weighted Bergman spaces.

Corollary 4.5: Let ν > a
2 (r − 1) and M (ν) = (M

(ν)
1 , . . . ,M

(ν)
d ) be the d-

tuple of multiplication operators on H(ν). Then the operator M
(ν)
i is essentially

normal, that is, the commutator

M
(ν)
i

∗
M

(ν)
i −M

(ν)
i M

(ν)
i

∗

is compact for all i = 1, . . . , d if and only if r = 1.

Proof. If r = 1, then by a direct computation it is easily verified that eachM
(ν)
i

is essentially normal. For the converse part, first set l to be the signature

(l, 0, . . . , 0), where l is a positive integer. Then, by Lemma 3.2 and Theorem 4.3,
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we see that

d∑
i=1

(M
(ν)
i

∗
M

(ν)
i −M

(ν)
i M

(ν)
i

∗
)p = η(l)p, p ∈ Pl,

where

(4.10) η(l) =
(dr + l)(l+ ar

2 )

(ν + l)(l + ar
2 )

+
l(r − 1)(dr − a

2 )

(ν − a
2 )(l +

a
2 )

− l

ν + l − 1
.

Suppose that each M
(ν)
i is essentially normal. Then the operator

d∑
i=1

(M
(ν)
i

∗
M

(ν)
i −M

(ν)
i M

(ν)
i

∗
)

is compact. Hence η(l) must converge to 0 as l → ∞. Thus, from (4.10), we

obtain that
(r−1)( d

r−a
2 )

ν− a
2

= 0. Finally, since d
r = 1 + a

2 (r − 1) + b, we conclude

that r = 1.

We finish this section with the following conjecture on the description of

the operator M (a)∗M (a) on the Hilbert space H(a) when the domain Ω is of

arbitrary rank.

Conjecture 4.6: Let Ω be an irreducible bounded symmetric domain of rank r.

Then, for any polynomial p in Ps, M
(a)∗M (a)p=δ(s)p on the Hilbert spaceH(a),

where

(4.11) δ(s) =
∑

j∈I+(s)

as

as+εj

(dr )s+εj

(dr )s
cs(j).

5. Unitary equivalence and Similarity

In this section, we study the question of unitary equivalence and similarity of

two commuting d-tuple of operators in the class AK(Ω). In particular, when K

is the unit circle T, these results were obtained by Shields in [27] and the case

when K is U(d), the similarity result was obtained in [19, Lemma 2.2].

By Theorem 2.3, any d-tuple of operators T in AK(Ω) is unitarily equiva-

lent to M (a) consisting of multiplication operators by the coordinate functions

z1, . . . , zd on the reproducing kernel Hilbert space H(a) with the reproducing

kernel K(a)(z,w) =
∑

s asKs(z,w), where as > 0 with a0 = 1. Thus we

assume, without loss of generality, that T ∼u M (a).
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Theorem 5.1: Let T 1 and T 2 be two operator tuples in AK(Ω). Suppose

that T 1∼uM
(a) and T 2∼uM

(b). Then the following statements are equivalent:

(i) T 1 and T 2 are unitarily equivalent.

(ii) as = bs for all s ∈ −→
N r

0.

(iii) K(a) = K(b).

Proof. It is easy to see that (ii) and (iii) are equivalent. It is obvious that (iii)

implies (i). Therefore it remains to verify that (i) implies (iii). Assume that the

d-tuples T 1 and T 2 are unitarily equivalent. Then so are the operators M (a)

and M (b). By [11, Theorem 3.7], there exists a holomorphic function g on Ω

such that

K(a)(z,w) = g(z)K(b)(z,w)g(w), z,w ∈ Ω.

In particular, K(a)(z, 0)=g(z)K(b)(z, 0)g(0), z∈Ω. Therefore, a0=b0g(z)g(0),

and consequently, g(z)g(0) = 1 since a0 = b0 = 1. Hence K(a) = K(b).

Recall that two commuting d-tuples A = (A1, . . . , Ad) and B = (B1, . . . , Bd),

defined on H1 and H2 respectively, are said to be similar if there exists an

invertible operator X : H1 → H2 such that XAi = BiX for all i = 1, . . . , d.

For a non-negative integer n, as before, Pn denotes the space of homogeneous

polynomials of degree n in d variables. For two non-negative definite kernels K

and K̃, we write K � K̃ if K̃ −K is a non-negative definite kernel.

Theorem 5.2: Let Ω ⊆ Cd be any bounded domain (not necessarily symmet-

ric), and let H1 and H2 be two reproducing kernel Hilbert spaces determined

by the positive definite kernels K1 and K2 respectively. Suppose that

(i) the space of polynomials P is dense in both H1 and H2,

(ii) Pn is orthogonal to Pm if m �= n in both H1 and H2,

(iii) for each i = 1, 2, the d-tuple M (i) = (M
(i)
1 , . . . ,M

(i)
d ) of multiplication

operators by the coordinate functions z1, . . . , zd on Hi is bounded.

Then the following statements are equivalent:

(i) M (1) and M (2) are similar.

(ii) There exist constants α, β > 0 such that

(5.12) α‖p‖H1 ≤ ‖p‖H2 ≤ β‖p‖H1, p ∈ P.

(iii) H1 = H2.

(iv) There exist constants α, β > 0 such that

αK1 � K2 � βK1.
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Proof. The equivalence of (iii) and (iv) follows from the standard theory of

reproducing kernel Hilbert spaces (cf. [3], [26]). Since the polynomials are dense

in both H1 and H2, by (5.12), it is clear that (ii) implies (iii). If H1 = H2, then

the identity operator from H1 to H2 is a bounded invertible operator which

intertwines the multiplication d-tuples M (1) and M (2), and consequently, (iii)

implies (i). Now, to complete the proof, it remains to show that (i) implies (ii).

Suppose that M (1) and M (2) are similar. Then there exists an invertible

operator X : H1 → H2 such that

(5.13) XM
(1)
j = M

(2)
j X, j = 1, . . . , d.

Since the subspaces Pn, n ≥ 0, are mutually orthogonal , it suffices to show

that (5.12) is satisfied for all p ∈ Pn and for some α, β > 0 (which is independent

of n). Fix a polynomial p in Pn. Clearly, it follows from (5.13) that

(5.14) XM (1)
p = M (2)

p X,

whereM
(i)
p is the operator of multiplication by the polynomial p onHi for i=1, 2.

Let (Xr,s)
∞
r,s=0 be the matrix representation of X with respect to

⊕∞
n=0 Pn,

that is,

Xr,s = PPrX|Ps
.

Similarly, let

M (i)
p = ((M (i)

p )r,s)
∞
r,s=0

be the matrix representation of M
(i)
p , i = 1, 2. Since M

(i)
p maps Ps into Ps+n,

i = 1, 2, it clear that

(5.15) (M (i)
p )r,s =

⎧⎨
⎩
(M

(i)
p )|Ps

, if r = s+ n,

0, otherwise.

Therefore it follows from (5.14) that

(5.16) Xr,s+n(M
(1)
p )s+n,s =

⎧⎨
⎩
(M

(2)
p )r,r−nXr−n,s, if r − n ≥ 0,

0, otherwise.

Choosing r = n and s = 0, we see that

(5.17) (M (2)
p )n,0X0,0 = Xn,n(M

(1)
p )n,0.
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Therefore

(5.18) (M (1)
p )∗n,0X

∗
n,nXn,n(M

(1)
p )n,0 = X∗

0,0(M
(2)
p )∗n,0(M

(2)
p )n,0X0,0.

Since ‖Xn,n‖ ≤ ‖X‖, we have

X∗
n,nXn,n ≤ ‖X‖2I.

Hence from (5.18) we obtain

(5.19) X∗
0,0(M

(2)
p )∗n,0(M

(2)
p )n,0X0,0 ≤ ‖X‖2(M (1)

p )∗n,0(M
(1)
p )n,0.

Note that X0,0 is a linear map from P0 to P0 and dimP0 = 1. Hence X0,01 = η1

for some η ∈ C. Also, taking p to be the polynomial zj , 1 ≤ j ≤ d, and r = 0

in (5.16) we see that

X0,s+1(M
(1)
zj )s+1,s = 0, for all s ≥ 0.

Since this is true for all j = 1, . . . , d, it follows that X0,s+1 = 0 for all s ≥ 0.

Moreover, since X is invertible we must have X0,0 �= 0. Otherwise, X0,s = 0

for all s ≥ 0, implying that P0 is orthogonal to the range of X , which is a

contradiction. Hence X0,0 �= 0, and consequently η �= 0. Therefore, from

(5.19), we obtain

〈(M (2)
p )n,0X0,01, (M

(2)
p )n,0X0,01〉 ≤ ‖X‖2〈(M (1)

p )n,01, (M
(1)
p )n,01〉.

Consequently,

(5.20) |η|2‖p‖2H2
≤ ‖X‖2‖p‖2H1

.

To finish the proof, note that (5.13) implies

X−1M
(2)
j = M

(1)
j X−1, j = 1, . . . , d.

Hence repeating the arguments used to establish (5.20) we obtain that

|ζ|2‖p‖2H1
≤ ‖X−1‖2‖p‖2H2

,

where (X−1)0,01 = ζ1, ζ �= 0. This completes the proof.

Remark 5.3: In the proof given above, we have shown thatX0,s = 0 for all s ≥ 1.

But using (5.16), it can be easily verified that Xr,s = 0 for all s > r, that is, X

is lower triangular with respect to the decomposition
⊕∞

n=0 Pn. Consequently,

ζ =
1

η
.
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Theorem 5.4: Let T 1 and T 2 be two operator tuples in AK(Ω). Suppose that

T 1 ∼u M (a) and T 2 ∼u M (b). Then the following statements are equivalent.

(i) T 1 and T 2 are similar.

(ii) There exist constants α, β > 0 such that

(5.21) α‖p‖H(a) ≤ ‖p‖H(b) ≤ β‖p‖H(a) , p ∈ P.

(iii) H(a) = H(b).

(iv) There exist constants α, β > 0 such that

αK(a) � K(b) � βK(a).

(v) There exist constants α, β > 0 such that

αas ≤ bs ≤ βas, s ∈ −→
N

r
0.

Proof. The equivalence of (i), (ii), (iii) and (iv) follows easily from Theorem 5.2.

Assume that (ii) holds. Then (v) is easily verified by choosing any polynomial

p in Ps and using

‖p‖2
H(a) =

‖p‖2F
as

and ‖p‖2H(b) =
‖p‖2F
bs

in (5.12). Also, it is trivial to see that (v) implies (iv).

Corollary 5.5: Let ν1, ν2 > a
2 (r − 1). Then the d-tuple of multiplication

operators M (ν1) on H(ν1) and M (ν2) on H(ν2) are similar if and only if ν1 = ν2.

Proof. Suppose thatM (ν1) andM (ν2) are similar. Then, by Theorem 5.4, there

exist constants α, β > 0 such that α(ν1)s ≤ (ν2)s ≤ β(ν1)s for all s ∈ −→
N r

0. Take

s = (s1, 0, . . . , 0), s1 ∈ N0. By the properties of the Gamma function we have

(ν1)s

(ν2)s
=

(ν1)s1
(ν2)s1

∼ s1
ν1−ν2 .

Hence ν1 = ν2. The other implication is trivial.

Acknowledgement. The authors have benefited greatly from many hours of

discussion on the topic of this paper with Prof. Harald Upmeier during his visits

to the Department of Mathematics, Indian Institute of Science, Bangalore as the

Infosys Chair Professor. We also express our sincere thanks to Prof. Gadadhar

Misra for several fruitful discussions and many useful suggestions, which resulted

in a considerable refinement of the original draft. The authors are also grateful

to Prof. Sameer Chavan for many helpful suggestions and comments during the

preparation of this paper.



Vol. 247, 2022 K-HOMOGENEOUS TUPLE 359

References

[1] J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded sym-

metric domains, in Multivariable Operator Theory (Seattle, WA, 1993) Contemporary

Mathematics, Vol. 185, American mathematical Society, Providence, RI, 1995, pp. 7–65.

[2] J. Arazy and G. Zhang, Homogeneous multiplication operators on bounded symmetric

domains, Journal of Functional Analysis 202 (2003), 44–66.

[3] N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical

Society 68 (1950), 337–404.

[4] W. Arveson, D. W. Hadwin, T. B. Hoover and E. E. Kymala, Circular operators, Indiana

University Mathematics Journal 33 (1984), 583–595.

[5] A. Athavale, A note on Cartan isometries, New York Journal of Mathematics 25 (2019),

934–948.

[6] B. Bagchi and G. Misra, Homogeneous tuples of multiplication operators on twisted

Bergman spaces, Journal of Functional Analysis 136 (1996), 171–213.
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