ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Classical Novae at Radio Wavelengths

Chomiuk, L and Linford, JD and Aydi, E and Bannister, KW and Krauss, MI and Mioduszewski, AJ and Mukai, K and Nelson, TJ and Rupen, MP and Ryder, SD and Sokoloski, JL and Sokolovsky, KV and Strader, J and Filipovi�, MD and Finzell, T and Kawash, A and Kool, EC and Metzger, BD and Nyamai, MM and Ribeiro, VARM and Roy, N and Urquhart, R and Weston, J (2021) Classical Novae at Radio Wavelengths. In: Astrophysical Journal, Supplement Series, 257 (2).

ast_jor_sup_ser_257-02_2021.pdf - Published Version

Download (7MB) | Preview
Official URL: https://doi.org/10.3847/1538-4365/ac24ab


We present radio observations (1-40 GHz) for 36 classical novae, representing data from over five decades compiled from the literature, telescope archives, and our own programs. Our targets display a striking diversity in their optical parameters (e.g., spanning optical fading timescales, t 2 = 1-263 days), and we find a similar diversity in the radio light curves. Using a brightness temperature analysis, we find that radio emission from novae is a mixture of thermal and synchrotron emission, with nonthermal emission observed at earlier times. We identify high brightness temperature emission (T B > 5 104 K) as an indication of synchrotron emission in at least nine (25) of the novae. We find a class of synchrotron-dominated novae with mildly evolved companions, exemplified by V5589 Sgr and V392 Per, that appear to be a bridge between classical novae with dwarf companions and symbiotic binaries with giant companions. Four of the novae in our sample have two distinct radio maxima (the first dominated by synchrotron and the later by thermal emission), and in four cases the early synchrotron peak is temporally coincident with a dramatic dip in the optical light curve, hinting at a common site for particle acceleration and dust formation. We publish the light curves in a machine-readable table and encourage the use of these data by the broader community in multiwavelength studies and modeling efforts. © 2021. The American Astronomical Society. All rights reserved..

Item Type: Journal Article
Publication: Astrophysical Journal, Supplement Series
Publisher: American Astronomical Society
Additional Information: The copyright for this article belongs to the Author.
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 06 Jan 2022 11:37
Last Modified: 06 Jan 2022 11:37
URI: http://eprints.iisc.ac.in/id/eprint/70818

Actions (login required)

View Item View Item