ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help
December 30, 2024

On best approximations to compact operators

Sain, D (2021) On best approximations to compact operators. In: Proceedings of the American Mathematical Society, 149 (10). pp. 4273-4286.

Full text not available from this repository.
Official URL: https://doi.org/10.1090/PROC/15494

Abstract

We study best approximations to compact operators between Banach spaces and Hilbert spaces, from the point of view of Birkhoff-James orthogonality and semi-inner-products. As an application of the present study, some distance formulae are presented in the space of compact operators. The special case of bounded linear functionals as compact operators is treated separately and some applications to best approximations in reflexive, strictly convex and smooth Banach spaces are discussed. An explicit example is presented in lnp spaces, where 1 < p < �, to illustrate the applicability of the methods developed in this article. A comparative analysis of the results presented in this article with the well-known classical duality principle in approximation theory is conducted to demonstrate the advantage in the former case, from a computational point of view. © 2021 by Debmalya Sain.

Item Type: Journal Article
Publication: Proceedings of the American Mathematical Society
Publisher: American Mathematical Society
Additional Information: The copyright for this article belongs to American Mathematical Society
Department/Centre: Division of Physical & Mathematical Sciences > Mathematics
Date Deposited: 28 Nov 2021 09:57
Last Modified: 28 Nov 2021 09:57
URI: http://eprints.iisc.ac.in/id/eprint/70134

Actions (login required)

View Item View Item