ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Free vibration analysis of A357 alloy reinforced with dual particle size silicon carbide metal matrix composite plates using finite element method

Lakshmikanthan, A and Mahesh, V and Prabhu, RT and Patel, MGC and Bontha, S (2021) Free vibration analysis of A357 alloy reinforced with dual particle size silicon carbide metal matrix composite plates using finite element method. In: Archives of Foundry Engineering, 21 (1). pp. 101-112.

[img] PDF
arc_fou_eng_21-01_101-112_2021.pdf - Published Version
Restricted to Registered users only

Download (838kB) | Request a copy
Official URL: https://doi.org/10.24425/afe.2021.136085

Abstract

In this work, the free vibration behaviour of A357 composite plate reinforced with dual particle size (DPS) (3 wt. coarse + 3 wt. fine, 4 wt. coarse + 2 wt. fine, and 2 wt. coarse + 4 wt. fine) SiC is evaluated using the finite element method. To this end, first-order shear deformation theory (FSDT) has been used. The equations of motion have been derived using Hamilton's principle and the solution has been obtained through condensation technique. A thorough parametric study was conducted to understand the effect of reinforcement size and weight fraction, boundary conditions, aspect ratio and length-to-width ratio of plate geometry on natural frequencies of A357/DPS-SiC composite plates. Results reveal significant influence of all the above variables on natural frequency of the composite plates. In all the cases, A357 composite plate reinforced with 4 wt. coarse and 2 wt. fine SiC particles displayed the highest natural frequency owing to its higher elastic and rigidity modulus. Further, the natural frequencies increase with decrease in aspect ratio of the plate geometry. Natural frequency also decreases with increase in the number of free edges. Lastly, increasing the length-to-width ratio drastically improves the natural frequency of the plates. © 2021 Polish Academy of Sciences. All rights reserved.

Item Type: Journal Article
Publication: Archives of Foundry Engineering
Publisher: Polska Akademia Nauk
Additional Information: The copyright for this article belongs to Polska Akademia Nauk
Keywords: Aspect ratio; Equations of motion; Finite element method; Metallic matrix composites; Natural frequencies; Particle reinforced composites; Particle size; Particle size analysis; Plates (structural components); Shear deformation; Silicon carbide; Vibration analysis, Composite plates; Condensation techniques; First-order shear deformation theory; Free-vibration analysis; Hamilton's principle; Length-to-width ratio; Parametric study; Weight fractions, Reinforcement
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering(Formerly Aeronautical Engineering)
Date Deposited: 19 Jul 2021 11:00
Last Modified: 19 Jul 2021 11:00
URI: http://eprints.iisc.ac.in/id/eprint/68896

Actions (login required)

View Item View Item