ERRATUM TO "NON-UNIFORMLY FLAT AFFINE ALGEBRAIC HYPERSURFACES"

ARINDAM MANDAL®, VAMSI PRITHAM PINGALI® AND DROR VAROLIN®

DOI: https://doi.org/10.1017/nmj.2019.2. Published online by Cambridge University Press: 2 April 2019

Abstract

In this erratum, we correct an erroneous result in [PV2] and prove that the affine algebraic hypersurfaces $x y^{2}=1$ and $z=x y^{2}$ are not interpolating with respect to the Gaussian weight.

§1. Introduction

Let (X, ω) be a Stein Kähler manifold of complex dimension n, equipped with a holomorphic line bundle $L \rightarrow X$ with smooth Hermitian metric $e^{-\varphi}$, and let $Z \subset X$ be a complex analytic subvariety of pure dimension d. To these data, assign the Hilbert spaces

$$
\mathscr{B}_{n}(X, \varphi):=\left\{F \in H^{0}\left(X, \mathcal{O}_{X}(L)\right) ;\|F\|_{X}^{2}:=\int_{X}|F|^{2} e^{-\varphi} \frac{\omega^{n}}{n!}<+\infty\right\}
$$

and

$$
\mathfrak{B}_{d}(Z, \varphi):=\left\{f \in H^{0}\left(Z, \mathcal{O}_{Z}(L)\right) ;\|f\|_{Z}^{2}:=\int_{Z_{\mathrm{reg}}}|f|^{2} e^{-\varphi} \frac{\omega^{d}}{d!}<+\infty\right\} .
$$

Such Hilbert spaces are called (generalized) Bergman spaces. When the underlying manifold is \mathbb{C}^{n} and the weight φ is a Bargmann-Fock weight, the spaces are called (generalized) Bargmann-Fock spaces.

We say that Z is interpolating if the restriction map

$$
\mathscr{R}_{Z}: H^{0}\left(X, \mathcal{O}_{X}(L)\right) \rightarrow H^{0}\left(Z, \mathcal{O}_{Z}(L)\right)
$$

induces a surjective map on Hilbert spaces. If the induced map

$$
\mathscr{R}_{Z}: \mathscr{B}_{n}(X, \varphi) \rightarrow \mathfrak{B}_{d}(Z, \varphi)
$$

is surjective, then one says that Z is an interpolation subvariety, or simply interpolating with respect to φ. It can be easily shown that if Z is interpolating, the map above is bounded.

In [PV2], Pingali and Varolin claimed that (Theorems 2 and 3) the (nonuniformly flat) curve $C_{2}=\left\{(x, y) \in \mathbb{C}^{2} \mid x y^{2}=1\right\}$ and the surface $S=\left\{(x, y, z) \in \mathbb{C}^{3} \mid z=x y^{2}\right\}$ are interpolating with respect to a smooth weight φ satisfying $m \omega_{0} \leq \sqrt{-1} \partial \bar{\partial} \phi \leq M \omega_{0}$, where ω_{0} is the Euclidean metric and $m, M>0$ are positive constants. The purported proof of the claim rested heavily on Lemma 3.2, which aimed to generalize the QuimBo trick [BOC]. Unfortunately, Lemma 3.2 is false. (However, for Theorems 1 and 4, we do not need

[^0]Lemma 3.2. Instead, Lemma 6 in [L] in conjunction with elliptic regularity is enough.) In this erratum, we in fact prove that the negations of Theorems 2 and 3 in [PV2] are true.

Theorem 1. The curve C_{2} is not interpolating with respect to the Gaussian weight $|x|^{2}+|y|^{2}$.

Using Theorem 6.1 in [PV2], we can easily see that the following result holds.
Theorem 2. The surface S is not interpolating with respect to the Gaussian weight $|x|^{2}+|y|^{2}+|z|^{2}$.

These results lead us to suspect that perhaps uniform flatness might be equivalent to being interpolating (with respect to the Gaussian weight) for smooth affine algebraic hypersurfaces. For smooth affine analytic hypersurfaces, this expectation is false as shown in [PV1].

§2. Proof of Theorem 1

Let $f_{n}(x, y)=y^{-(2 n+1)}$, then $f_{n} \in \mathcal{O}\left(C_{2}\right)$.
Now,

$$
\begin{align*}
\left\|f_{n}\right\|^{2} & =\int_{C_{2}}\left|f_{n}(x, y)\right|^{2} e^{-\left(|x|^{2}+|y|^{2}\right)} d A \\
& =\int_{\mathbb{C}^{*}}\left|y^{-(2 n+1)}\right|^{2} e^{-\left(|y|^{-4}+|y|^{2}\right)}\left(1+4|y|^{-6}\right) d V(y) \\
& =\pi \int_{r=0}^{\infty} r^{-(2 n+1)} e^{-\left(r+r^{-2}\right)}\left(1+4 r^{-3}\right) d r . \tag{1}
\end{align*}
$$

For $\frac{1}{2}<s<\frac{3}{2}$ and $\frac{1}{2}<t<\frac{3}{2}$, let us consider the following integral:

$$
\begin{aligned}
\int_{0}^{\infty} e^{-\left(s r+t r^{-2}\right)} 4 r^{-3} d r & =\left[e^{-s r} \int e^{-t r^{-2}} 4 r^{-3} d r\right]_{0}^{\infty}-\int_{0}^{\infty}-s e^{-s r}\left(\int e^{-t r^{-2}} 4 r^{-3} d r\right) d r \\
& =\left[e^{-s r} \frac{2}{t} e^{-t r r^{-2}}\right]_{0}^{\infty}+\int_{0}^{\infty} s e^{-s r} \frac{2}{t} e^{-t r^{-2}} d r \\
& =\frac{2 s}{t} \int_{0}^{\infty} e^{-\left(s r+t r^{-2}\right)} d r
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\left(s r+t r^{-2}\right)}\left(1+4 r^{-3}\right) d r=\left(1+\frac{2 s}{t}\right) \int_{0}^{\infty} e^{-\left(s r+t r^{-2}\right)} d r . \tag{2}
\end{equation*}
$$

Differentiating (2) with respect to s, we arrive at the following:

$$
\begin{equation*}
\int_{0}^{\infty}-r e^{-\left(s r+t r^{-2}\right)}\left(1+4 r^{-3}\right) d r=\left(1+\frac{2 s}{t}\right) \int_{0}^{\infty}-r e^{-\left(s r+t r^{-2}\right)} d r+\frac{2}{t} \int_{0}^{\infty} e^{-\left(s r+t r^{-2}\right)} d r \tag{3}
\end{equation*}
$$

Setting $s=1$ in (3), we have

$$
\begin{equation*}
\int_{0}^{\infty} r e^{-\left(r+t r^{-2}\right)}\left(1+4 r^{-3}\right) d r=\int_{0}^{\infty} r e^{-\left(r+t r^{-2}\right)} d r+\frac{2}{t} \int_{0}^{\infty}(r-1) e^{-\left(r+t r^{-2}\right)} d r \tag{4}
\end{equation*}
$$

Differentiating (4) $(n+1)$ times with respect to t, we see that

$$
\begin{align*}
& \int_{0}^{\infty} r\left(-r^{-2}\right)^{n+1} e^{-\left(r+t r^{-2}\right)}\left(1+4 r^{-3}\right) d r \\
& =\int_{0}^{\infty} r\left(-r^{-2}\right)^{n+1} e^{-\left(r+t r^{-2}\right)} d r+2 \int_{0}^{\infty}(r-1) e^{-r} \frac{d^{n+1}}{d t^{n+1}}\left(\frac{e^{-t r^{-2}}}{t}\right) d r \\
& =(-1)^{n+1} \int_{0}^{\infty} r^{-2 n-1} e^{-\left(r+t r^{-2}\right)} d r+2(-1)^{n+1} \int_{0}^{\infty}(r-1) e^{-r} \sum_{k=0}^{n+1} \frac{(n+1)!}{(n+1-k)!} \frac{r^{-2(n+1-k)}}{t^{k+1}} e^{-t r^{-2}} d r \\
& =(-1)^{n+1} \int_{0}^{\infty} r^{-2 n-1} e^{-\left(r+t r^{-2}\right)} d r+2(-1)^{n+1}(n+1)!\int_{0}^{\infty}(r-1) e^{-\left(r+t r^{-2}\right)} \sum_{k=0}^{n+1} \frac{r^{-2(n+1-k)}}{(n+1-k)!} \frac{1}{t^{k+1}} d r . \tag{5}
\end{align*}
$$

Substituting $t=1$ in (5), we get

$$
\begin{align*}
\int_{0}^{\infty} r^{-(2 n+1)} e^{-\left(r+r^{-2}\right)}\left(1+4 r^{-3}\right) d r= & \int_{0}^{\infty} r^{-2 n-1} e^{-\left(r+r^{-2}\right)} d r \\
& +2(n+1)!\int_{0}^{\infty}(r-1) e^{-\left(r+r^{-2}\right)} \sum_{k=0}^{n+1} \frac{r^{-2 k}}{k!} d r \tag{6}
\end{align*}
$$

Now,

$$
\begin{align*}
& \int_{0}^{\infty} r^{-2 n-1} e^{-\left(r+r^{-2}\right)} d r \\
& =\left[e^{-r} \int r^{-2(n-1)} e^{-r^{-2}} r^{-3} d r\right]_{0}^{\infty}-\int_{0}^{\infty}-e^{-r}\left(\int r^{-2(n-1)} e^{-r^{-2}} r^{-3} d r\right) d r \\
& =\frac{(-1)^{n-1}}{2}\left[e^{-r} \sum_{k=0}^{n-1}(-1)^{n-1-k} \frac{(n-1)!}{k!}\left(-r^{-2}\right)^{k} e^{-r^{-2}}\right]_{0}^{\infty} \\
& \quad+\frac{(-1)^{n-1}}{2} \int_{0}^{\infty} e^{-r} \sum_{k=0}^{n-1}(-1)^{n-1-k} \frac{(n-1)!}{k!}\left(-r^{-2}\right)^{k} e^{-r^{-2}} d r \\
& =\frac{(n-1)!}{2} \int_{0}^{\infty} e^{-\left(r+r^{-2}\right)} \sum_{k=0}^{n-1} \frac{r^{-2 k}}{k!} d r \\
& \leq \frac{(n-1)!}{2} \int_{0}^{\infty} e^{-\left(r+r^{-2}\right)} e^{r^{-2}} d r . \\
& \leq(n-1)! \tag{7}
\end{align*}
$$

Using (1), (6), and (7), we can see that the following holds:

$$
\begin{equation*}
\left\|f_{n}\right\|^{2} \leq \pi(n-1)!+2 \pi(n+1)!\int_{0}^{\infty}(r-1) e^{-\left(r+r^{-2}\right)} \sum_{k=0}^{n+1} \frac{r^{-2 k}}{k!} d r<\infty \tag{8}
\end{equation*}
$$

Suppose C_{2} is interpolating. Then, there exist $F_{n} \in \mathscr{B}_{2}\left(\left(|x|^{2}+|y|^{2}\right)\right)$ and $C>0$ such that $\left.F_{n}\right|_{C_{2}}=f_{n}$ and

$$
\begin{equation*}
\left\|F_{n}\right\| \leq C\left\|f_{n}\right\|, \forall n \in \mathbb{N} \tag{9}
\end{equation*}
$$

Let

$$
F_{n}(x, y)=\sum_{i, j \geq 0} c_{i j} x^{i} y^{j}
$$

Then, we have

$$
\begin{align*}
y^{-(2 n+1)} & =\sum_{i, j \geq 0} c_{i j} y^{-2 i} y^{j} \\
& =\sum_{i, j \geq 0} c_{i j} y^{-(2 i-j)} \\
& =\sum_{2 i-j=2 n+1} c_{i j} y^{-(2 i-j)} \tag{10}
\end{align*}
$$

This equation implies that

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{k+n, 2 k-1}=1 \tag{11}
\end{equation*}
$$

Equation (11) implies that there exists an $m \in \mathbb{N}$ such that $\left|c_{m+n, 2 m-1}\right| \geq 2^{-(m+1)}$. Therefore,

$$
\begin{align*}
\left\|F_{n}\right\|^{2} & \geq \sum_{k=1}^{\infty}\left|c_{k+n, 2 k-1}\right|^{2}(k+n)!(2 k-1)! \\
& \geq\left|c_{m+n, 2 m-1}\right|^{2}(m+n)!(2 m-1)! \\
& \geq\left(2^{-(m+1)}\right)^{2}(1+n)!2^{2 m-2} \\
& \geq \frac{(n+1)!}{2^{4}} \tag{12}
\end{align*}
$$

From (8), (9), and (12), we conclude that

$$
\frac{(n+1)!}{2^{4}} \leq C\left(\pi(n-1)!+2 \pi(n+1)!\int_{0}^{\infty}(r-1) e^{-\left(r+r^{-2}\right)} \sum_{k=0}^{n+1} \frac{r^{-2 k}}{k!} d r\right)
$$

This inequality implies that

$$
\frac{1}{2^{4}} \leq \pi C\left(\frac{1}{n(n+1)}+2 \int_{0}^{\infty}(r-1) e^{-\left(r+r^{-2}\right)} \sum_{k=0}^{n+1} \frac{r^{-2 k}}{k!} d r\right)
$$

We are led to a contradiction because $\left(\frac{1}{n(n+1)}+2 \int_{0}^{\infty}(r-1) e^{-\left(r+r^{-2}\right)} \sum_{k=0}^{n+1} \frac{r^{-2 k}}{k!} d r\right) \rightarrow 0$, as $n \rightarrow \infty$.

References

[BOC] B. Berndtsson and J. Ortega Cerdá, On interpolation and sampling in Hilbert spaces of analytic functions, J. Reine Angew. Math. 464 (1995), 109-128.
[L] N. Lindholm, Sampling in weighted L^{p} spaces of entire functions in \mathbb{C}^{n} and estimates of the Bergman kernel, J. Funct. Anal. 182 (2001), no. 2, 390-426.
[PV1] V. P. Pingali and D. Varolin, Bargmann-Fock extension from singular hypersurfaces, J. Reine Angew. Math. 717 (2016), 227-249.
[PV2] V. P. Pingali and D. Varolin, Nonuniformly flat affine algebraic hypersurfaces, Nagoya Math. J. 241 (2021), 1-43.

Arindam Mandal
Department of Mathematics
Indian Institute of Science
Bangalore 560012, India
arindamm@iisc.ac.in

Vamsi Pritham Pingali
Department of Mathematics
Indian Institute of Science
Bangalore 560012, India
vamsipingali@iisc.ac.in

Dror Varolin
Department of Mathematics
Stony Brook University
Stony Brook, New York
11794-3651, USA
dror@math.stonybrook.edu

[^0]: Received March 19, 2023. Revised April 10, 2023. Accepted May 4, 2023.
 2020 Mathematics subject classification: 32A36, 32U05, 32W50.
 Pingali is partially supported by grant F.510/25/CAS-II/2018(SAP-I) from the University Grants Commission (Govt. of India) and a Mathematical Research Impact Centric Support grant MTR/2020/000100 from the Science and Engineering Research Board (Govt. of India).

