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We attempt to address the old problem of plane shear flows: the origin of turbulence
and hence transport of angular momentum in accretion flows as well as laboratory flows,
such as plane Couette flow. We undertake the problem by introducing an extra force in
Orr-Sommerfeld and Squire equations along with the Coriolis force mimicking the local
region of the accretion disk. For plane Couette flow, the Coriolis term drops. Subsequently
we solve the equations with the WKB approximation method. We investigate the dispersion
relation for the Keplerian flow and plane Couette flow for all possible combinations of
wave vectors. Due to the very presence of extra force, we show that both flows are unstable
for a certain range of wave vectors. However, the nature of instability between the flows is
different. We also study the Argand diagrams of the perturbation eigenmodes. This helps us
to compare the different timescales corresponding to the perturbations as well as accretion.
We ultimately conclude with this formalism that fluid gets enough time to be unstable and
hence plausibly turbulent particularly in the local regime of the Keplerian accretion disks.
Repetition of the analysis throughout the disk explains the transport of angular momentum
and matter along outward and inward directions, respectively.

DOI: 10.1103/PhysRevFluids.6.013903

I. INTRODUCTION

A long-standing mismatch between theory and experiment regarding the transition from laminar
to turbulent flows for laboratory fluids, e.g., plane Couette flow and plane Poiseuille flow, exists in
the literature. The linear theory of perturbation says that plane Poiseuille flow becomes unstable
beyond Reynolds number (Re) 5772.22 [1] and, on the other hand, plane Couette flow is stable for
any Re [2]. However, according to experiments/simulations, beyond Re ∼ 1000 [3,4] and Re ∼ 350
[5,6] the laminar flow becomes turbulent in the case of plane Poiseuille flow and plane Couette flow,
respectively. A similar kind of mismatch exists in the context of astrophysics, particularly in case
of accretion disks. Accretion disks are astrophysical objects formed around a denser object mainly
in the form of a disk. Nevertheless, the accretion disk involves very sophisticated (or rich) physics
behind the formation and evolution of its various parts depending on the nature of the central objects
(black holes, white dwarfs, neutron stars, main sequence stars, etc.) around which the matter accretes
in the form of a disk. The physics also involves the nature of mass supply (e.g., mass supplied from
evolved stars, the interstellar medium, molecular clouds, etc.) that aids accretion around the central
object. However, in this work, we shall be discussing a geometrically thin and optically thick disk,
where the accreting matter almost follows Kepler’s law, i.e., the fluid particle in the corresponding
flow revolves around the central object at a particular radius due to the almost balance between
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inward gravitational force and outward centrifugal force. The flow therefore is called Keplerian
flow. The change in the angular momentum per unit mass of the fluid particle, therefore, occurs
in increasing proportion to the square root of the radial distance of the particle. Due to the very
nature of the Keplerian rotation, the perturbation of the fluid particle decays and eventually the
particle returns to its initial position. This is called Rayleigh stability. The Keplerian flow, therefore,
is Rayleigh stable.

However, due to the Keplerian rotation, two fluid layers across the radial direction in the disk will
have different angular velocities. Since the flow has differential velocity across the radial direction,
molecular viscosity comes into the picture. However, observational evidence, e.g., temperature,
luminosity, etc., from the Keplerian accretion disk do not support the molecular viscosity as the
origin of matter transport. The molecular viscosity is so weak that it cannot transport the angular
momentum outward and matter inward and hence cannot explain the observables [7]. The belief is
that it is the turbulent viscosity which is behind the transport. This idea was put forward by Shakura
and Sunyaev [8] and Lynden-Bell and Pringle [9] without explicitly revealing the reason behind the
turbulence. In 1991 Balbus and Hawley [10] came up with an idea of an instability mechanism
due to the interplay between weak magnetic field and the rotation of the fluid parcel, naming
magneto-rotational instability (MRI), following the idea of Velikhov [11] and Chandrasekhar [12].
In spite of the overwhelming success of MRI in explaining the origin of turbulence, it is not lacking
caveats. In the colder systems, e.g., a protoplanetary disk [13,14], cataclysmic variables in their
low states [15,16], the outer part of active galactic nucleus (AGN) disks, and the underlying dead
zone [17], where the ionization is very small such that matter cannot be coupled with the magnetic
field, MRI gets suppressed. It is not only the low ionization that challenges MRI; there are, in fact,
many other examples too. Nath and Mukhopadhyay [18] argued that it is the magnetic transient
growth that brings nonlinearity and hence plausible turbulence in the system beyond Re = 109,
since their growth rate is faster than MRI in that regime. Usually, Re in accretion disks [19] is
larger than this value, hence the relevance of MRI in large Re systems is questionable. As a general
point of interest, the transient energy growth in the case of magnetohydrodynamical shear flows
(with viscosity and resistivity included) was studied further by Bhatia and Mukhopadhyay [20].
They showed that even transient energy growth ceased to occur beyond a certain magnetic field.
In addition to this, Pessah and Psaltis [21] and Das et al. [22], using local and global analysis,
respectively, showed the stabilization of the axisymmetric MRI above a certain magnitude of a
toroidal component of the magnetic field for compressible and differentially rotating flows. It is,
therefore, of great concern whether there is any instability in the system from a hydrodynamical
origin.

However, in the literature [23–34], there is a long-standing debate regarding the stability of
Rayleigh stable flows, particularly in the context of accretion disks. Approximating the local hot
accretion flow to be shearing sheet, researchers [35,36] attempted, analytically and with simulation,
to resolve the issue without considering viscosity. They concluded that the sustained turbulence
and hence outward transport of angular momentum were not possible in the Keplerian flow if
hydrodynamics was considered only. However, Lesur and Longaretti [37], with shearing sheet
approximation and considering viscosity strongly, disagreed with the aforementioned authors and
claimed that the absence of turbulence in the simulation in the above-mentioned works was
resolution issue. Although they agreed that there was a lack of computer resources to resolve the
Keplerian regime, their extrapolated numerical data could not produce astrophysically sufficient
subcritical turbulent transport in the Keplerian flow. Pumir [38], however, claimed for sustained
turbulence if the mean flow follows the plane Couette flow profile. However, they did not consider
rotational effects. Fromang and Papaloizou [39], though they did magnetohydrodynamical (MHD)
simulation, argued for considering explicit diffusion coefficients, both resistive and viscous, whose
effect is stronger than the numerical dissipation effect, before making any conclusion based on
MHD simulation. Therefore, we notice that in all of these works some important physics are
missing: viscosity [35,36], resolution of the Keplerian region [37], the Coriolis force [38], explicit
diffusion coefficients (both viscous and resistive) [39] are not adequately considered. Even if we
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have well-resolved simulations [40–42], the previously mentioned facts or parameter regions, where
MRI is inapplicable or insufficient as an instability mechanism, do exist. Nevertheless, the authors
argued for plausible emergence of hydrodynamics instability and hence further turbulence through
experiment (e.g., Ref. [43]), simulations in the context of accretion disks (e.g., Ref. [44]), and
transient growth in the case of otherwise linearly stable flows (e.g., Refs. [33,45–47]).

We, therefore, search for a hydrodynamical origin of nonlinearity and hence plausible turbulence
in the accretion disk. We, in particular, consider an extra force in this work, and the force has a
stochastic origin. The existence and consequences of the stochastic force in the hydrodynamical
systems were initiated by Mukhopadhyay and Chattopadhyay [34] inspired by the idea of Nelson
and Foster [48] and DeDominicis and Martin [49]. They showed that the presence of the stochastic
force in the rotating shear flows in a narrow gap limit reveals large correlation of energy growth
of the perturbation. Later, Nath and Mukhopadhyay [50] obtained the dispersion relation of the
linear perturbations considering stochastic force in the Orr-Sommerfeld and Squire equations,
describing the fluid flow in a small radial patch of the accretion disk. However, they considered the
plane wave perturbation with a constant amplitude as the trial solution of the Orr-Sommerfeld and
Squire equations. In the present work, we consider three-dimensional perturbations and the WKB
approximation to obtain the solutions for Orr-Sommerfeld and Squire equations. While qualitatively
we obtain similar result as Nath and Mukhopadhyay [50], it brings quantitative insight which
is useful to infer observed data and/or experimental results based on our model. We also obtain
the Argand diagrams corresponding to the perturbations, and these are necessary to compare the
timescales corresponding to the growth with those of oscillation of the perturbations. In addition
to this, we also confirm whether the fluid parcel inside the shearing box within a small patch of
accretion disk gets enough time to enter into the nonlinear regime and hence becomes turbulent
within the timescale it came across the box. However, for plane Couette flow, we do not need to
worry about any such timescale, as there is no radial infall.

The plan of the paper is the following. In Sec. II we describe the governing equations, which
are Orr-Sommerfeld and Squire equations in the presence of Coriolis force and noise for linearly
perturbed flow inside a shearing box at a smaller patch of accretion disk. We then write them in the
Fourier space to obtain a general dispersion relation. In Sec. III the dispersion relation is studied
extensively for the Keplerian and plane Couette flows. The Argand diagrams corresponding to the
linear perturbations in the case of Keplerian flow are studied in Sec. IV for various parameters. In the
end, we discuss the plausibility of occurrence of instability, which could lead further to nonlinearity
and hence turbulence in the context of accretion disks and laboratory flows, e.g., plane Couette flows
in Sec. V. We finally conclude in Sec. VI that our model is able to explain the origin of instability
and hence turbulence in the context of accretion disk as well as plane Couette flow.

II. FORMALISM

The detailed description of the local formulation can be found in Mukhopadhyay et al. [45] and in
Bhatia and Mukhopadhyay [20]. The schematic diagram of the background flow inside the shearing
box is shown in Ref. [33]. As the fluid is in the local region, we assume the fluid to be incompressible
[18,46]. There we recast the Navier-Stokes equation in Orr-Sommerfeld and Squire equations in
the presence of Coriolis force and extra force by eliminating the pressure term from different
components of the Navier-Stokes equation and utilizing the continuity equation for incompressible
flow [50]. The ensemble-averaged Orr-Sommerfeld and Squire equations in the presence of Coriolis
force and extra force are given by(

∂
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∂

∂y
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where U = −x is the y component of background velocity. The other components of background
velocity are zero; u and ζ are x components of velocity and vorticity perturbations, respectively; q
is the rotation parameter which describes the radial dependence of the angular frequency of fluid
element around the central object, given by � ∝ 1/rq; Re is the Reynolds number; η1 and η2 are the
extra forces on the fluid particles. q becomes 1.5 and ∞ for the Keplerian and plane Couette flows
[20,45] respectively. In order to obtain the dispersion relation, we write the above equations in the
Fourier space. Our conventions for Fourier transform and inverse Fourier transform are, respectively,

A(r, t ) =
∫

Ãk,ωei(k·r−ωt ) d3k dω (3)

and

Ãk,ω =
(

1

2π

)4 ∫
A(r, t )e−i(k·r−ωt ) d3x dt . (4)

Here A can be any one of u, ζ , and ηi; k and ω are the wave vector and frequency, respectively, in
Fourier space such that in Cartesian coordinates k = (kx, ky, kz ) and |k| = k; r is the position vector
and in Cartesian coordinates r = (x, y, z).

The boundary conditions to solve Eqs. (1) and (2) are

u = ∂u

∂x
= ζ = 0, at x = ±1. (5)

In Fourier space, Eqs. (1) and (2) become

kyk2 ∂ ũk,ω

∂kx
=

(
iωk2 − 2kxky − k4

Re

)
ũk,ω + 2ikz

q
ζ̃k,ω − m1δ(k)δ(ω), (6)

ky
∂ζ̃k,ω
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= −ikz

(
1 − 2

q

)
ũk,ω +

(
iω − k2

Re

)
ζ̃k,ω + m2δ(k)δ(ω), (7)

where the Fourier transform of ηi is miδ(k)δ(ω) with mi being the constant mean corresponding to
ηi. The traveling wave solutions for Eqs. (1) and (2) are assumed to be

u = u(x)ei(α·r−βt ), ζ = ζ (x)ei(α·r−βt ), (8)

where the wave vector, α, is given by α = (α1, α2, α3), and β is the frequency. Usually β is a
complex quantity and, according to our convention, if the imaginary part of β, i.e., Im(β ), is positive,
then the perturbation grows with time. To obtain the dispersion relation, we transform Eq. (8) in the
Fourier space (see the Appendix) and substitute them in Eqs. (6) and (7), and then we integrate with
respect to ω and k. See the Appendix for details. We further use the WKB approximation to obtain
the solution. Therefore, we neglect second- and higher-order derivatives, as they are varying slowly
over the length 1/α1. The dispersion relations from Eqs. (6) and (7) are then(

iβα2 − α4

Re

)
u(0) + 2iα1

(
2α2

Re
− iβ

)
u′(0) + 2iα3

q
ζ (0) − m1 = 0,

−iα3

(
1 − 2

q

)
u(0) +

(
iβ − α2

Re

)
ζ (0) + 2iα1

Re
ζ ′(0) + m2 = 0. (9)

Here u(0) and u′(0) are, respectively, values of u(x) and u′(x) at x = 0. We also consider the first-
order derivatives to be

u′(0) = γ u(0) = γ u0, ζ ′(0) = γ ζ (0) = γ ζ0,
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and the same strength for the extra forces, i.e., m1 = m2 = m. Now if we eliminate ζ with all the
assumptions from Eqs. (6) and (7), we obtain the dispersion relation, which is given by

m

(
2α3 + βq + iα2q

Re
+ 2α1γ q

Re

)
= u0

(
2iα2

3 + iα2β2q + 2α1β
2γ q − 4iα2

3

q
− iα6q

Re2 − 6α1α
4γ q

Re2

+ 8iα2
1α

2γ 2q

Re2 − 2α4βq

Re
+ 8iα1α

2βγ q

Re
+ 4α2

1βγ 2q

Re

)
.

(10)

For clarity, we consider γ = ±1,±α1,±iα1. However, only γ = iα1 gives Im(β ) < 0 for any Re
without extra force is considered, i.e., m = 0, which is physical. We, therefore, stick to γ = iα1

throughout the paper. For computational purposes, we consider the components of wave vectors
along the y direction to be zero, i.e., α2 = α2

1 + α2
3 . However, if we make α3 = 0 and α2 = α2

1 + α2
2 ,

from Eq. (9) it is clear that the problem will become qualitatively plane Couette flow.

III. DISPERSION RELATION

A. Keplerian flow

Here we shall study the solutions of Eq. (10) for different parameters. Equation (10) is a quadratic
equation of β with complex coefficients. Among the two solutions of β, the one which we are
interested in is

β = − 0.5i

3α2
1q + α2
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1q
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2
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− 1

Re
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24iα3α

2
1mqRe2
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u0
+ m2q2Re2
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0
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1mq2Re
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+ 16α8
1q2 + 24α2

3α
2
1qRe2 + 8α4

3qRe2 − 48α2
3α

2
1Re2 − 16α4

3Re2

) 1
2

]
. (11)

The other solution of β is always stable irrespective of extra force. However, Eq. (11) expectedly
provides negative Im(β ) for m = 0 irrespective of Re. Interestingly, Eq. (11) also provides positive
Im(β ) within a particular window of α1 and α3 beyond certain m depending on Re for a fixed q.
Here we observe the dispersion relations, i.e., the variation of Im(β ) as a function of α1 and α3

for different Re and m/u0 for the Keplerian flow. Figures 1 and 2 show the variation of Im(β ) as
a function of α1 and α3 for the Keplerian and plane Couette flow (see Sec. III B), respectively, for
m/u0 = 0. From linear stability analysis, we know these two flows are stable for any Re, and this is
confirmed in Figs. 1 and 2. The kinks in Fig. 1 around α3 = 0 are there for q < 2, and hence their
presence is due to the rotation in the system.

The color codes that we use for the contour plots for Figs. 1 to 6 are the following. We use blues
and reds to indicate Im(β )’s negativity and positivity, respectively. We use white to indicate the
transition from the negative to positive of Im(β ).

As we introduce the extra force, i.e., m �= 0, Im(β ) becomes positive for a particular range of
α1 and α3. Throughout the paper, we use Im(β )max and Re(β )max to indicate the maximum value of
Im(β ) and at which Re(β ) it occurs, respectively. Figures 3 and 4 show the variation of Im(β ) as a
function of α1 and α3 for m/u0 = 10 for the Keplerian flow but for Re = 102 and 1010, respectively.
Figures 5 and 6 show the variation of Im(β ) as a function of α1 and α3 for Re = 104 for the Keplerian
flow but for m/u0 = 10 and 102, respectively. These two figures depict that the increment of m/u0

increases the Im(β ) value for a fixed Re. Note that the bounds on the axes of Figs. 4 and 5 are
different than that of Figs. 3 and 6. The reason is described later in this section.
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FIG. 1. Variation of Im(β ) as a function of α1 and α3 for Re = 1010 and m/u0 = 0 for the Keplerian flow.

Now if we fix m/u0 and increase Re, it is expected that the value of Im(β ) increases. Figures 7,
8, 9, and 10 depict the same. These four figures show the variation of Im(β ) as a function of α1 and
α3 in three dimensions for Re = 10, 102, 103 and 104 for m/u0 = 10 in the case of the Keplerian
flow. Im(β )max is given in the caption corresponding to each figure to compare one with other. We
make three-dimensional plots for these cases to capture Im(β )max, as it is not obvious from the
contour plots, particularly from Figs. 3 and 4. This fact becomes clear once we compare Figs. 5
and 10. From these four three-dimensional figures and from Figs. 3, 5, and 4, it is clear that the
increment of Re for a fixed m/u0 also increases the range of α1 and α3 which could give rise to

FIG. 2. Variation of Im(β ) as a function of α1 and α3 for Re = 1010 and m/u0 = 0 for plane Couette flow.
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FIG. 3. Variation of Im(β ) as a function of α1 and α3 for Re = 102 and m/u0 = 10 for the Keplerian flow.

positive Im(β ) and hence instability in the system. To capture this particular fact, we zoom out the
axes of Figs. 4 and 5 as these two figures look almost similar if the bound on the axes is chosen
from −10 to 10. Similarly, Figs. 9 and 10 may apparently look same, but they are not. If we check
the fact at which value of Im(β ) the surfaces of Im(β ) corresponding to these two figures cut the

FIG. 4. Variation of Im(β ) as a function of α1 and α3 for Re = 1010 and m/u0 = 10 for the Keplerian flow.
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FIG. 5. Variation of Im(β ) as a function of α1 and α3 for Re = 104 and m/u0 = 10 for the Keplerian flow.

Im(β ) axis at α1 = −10, then we can be sure that they are not same. Apart from this, Fig. 9 shows
that at α1 = −10, the surface of Im(β ) is downwards while the same for Fig. 10 is almost flat.

However, Im(β )max does not increase beyond 0.91, even if we increase Re for m/u0 = 10 for
the Keplerian flow. It, therefore, looks like Im(β )max gets saturated at 0.91 at Re = 104, and any
further increment in Re increases only the range of α1 and α3 that makes Im(β ) positive. This

FIG. 6. Variation of Im(β ) as a function of α1 and α3 for Re = 104 and m/u0 = 102 for the Keplerian flow.
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FIG. 7. Variation of Im(β ) in three dimensions as a function of α1 and α3 for Re = 10 and m/u0 = 10 for
the Keplerian flow. Im(β )max = 0.33.

FIG. 8. Variation of Im(β ) in three dimensions as a function of α1 and α3 for Re = 102 and m/u0 = 10 for
the Keplerian flow. Im(β )max = 0.822.

FIG. 9. Variation of Im(β ) in three dimensions as a function of α1 and α3 for Re = 103 and m/u0 = 10 for
the Keplerian flow. Im(β )max = 0.896.
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FIG. 10. Variation of Im(β ) in three dimensions as a function of α1 and α3 for Re = 104 and m/u0 = 10
for the Keplerian flow. Im(β )max = 0.91.

saturation of Im(β ) depends on m/u0. Figure 6 shows the variation of Im(β ) as a function of α1

and α3 for Re = 104 and m/u0 = 102 in the case of Keplerian flow. In this case, Im(β )max is 2.12.
Increment of m/u0, therefore, increases the saturation in Im(β )max. This situation is well depicted in
Fig. 11, which shows the variation of Im(β )max as a function of Re for m/u0 = 10 and m/u0 = 100
for the Keplerian flow. In addition, the same figure shows the saturation of Im(β )max for a fixed
m/u0. If we consider α1 = 0 in Eq. (11), we obtain the dispersion relations as shown by Nath and
Mukhopadhyay [50] in their Figure 2.

Re

FIG. 11. Variation of Im(β )max as a function of Re for m/u0 = 10 and m/u0 = 100 for the Keplerian flow.
The dashed and dotted lines represent Im(β )max = 0.91 and 2.12, respectively.
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FIG. 12. Variation of Im(β ) as a function of α1 and α3 for Re = 102 and m/u0 = −10−2 for plane Couette
flow. At α1 = α3 = 0, Im(β ) → ∞. It is indicated by a white point at the center of the plot.

B. Plane Couette flow

For plane Couette flow, Eq. (11) becomes

β = − 0.5i

3α2
1 + α2

3

[
m

u0
+ 14α4

1

Re
+ 12α2

3α
2
1

Re
+ 2α4

3

Re
− 1

Re

(
m2Re2

u2
0

− 8α4
1mRe

u0
+ 16α8

1

) 1
2
]
. (12)

It is quite obvious that β is an imaginary quantity for plane Couette flow. To have instability,
therefore, the quantity within the square bracket must be negative, and this leads to the condition

m

u0
< − 45

Re(9α1
4 + 6α1

2α3
2 + α3

4)

(
α1

8 + 1.867α1
6α3

2

+ 1.111α1
4α3

4 + 0.267α1
2α3

6 + 0.022α3
8
)
. (13)

m/u0, therefore, has to be negative to have instability in plane Couette flow. If we make α1 = 0, the
condition in Eq. (13) becomes

m

u0
< − α4

3

Re
, (14)

which was obtained by Nath and Mukhopadhyay (2016) [50] for vertical perturbation.
From Eq. (12) it is obvious that Im(β ) blows up at α1 = α3 = 0. The color bars in the contour

plots corresponding to plane Couette flow, therefore, have different meaning than indicating the
value of Im(β ). They, rather, indicate the range of α1 and α3 within which Im(β ) has positive value,
i.e., flow is unstable.

We use the same color codes for the contour plots in Figs. 12, 13, 16, and 17, as used in
Sec. III A. However, we use gray to indicate the transition from the positive to negative of Im(β ).
As α1, α3 → 0, Im(β ) → ∞. The region where α1, α3 → 0, therefore, cannot be captured in the
contour plots. This region, therefore, is covered with white by default. However, to avoid any
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FIG. 13. Variation of Im(β ) as a function of α1 and α3 for Re = 1010 and m/u0 = −10−2 for plane Couette
flow.

confusion, we mention “Infinity” inside this region wherever possible, otherwise we mention it
in the corresponding captions.

Figures 12 and 13 show the variation of Im(β ) as a function of α1 and α3 for m/u0 = −10−2,
Re = 102 and 1010, respectively, for plane Couette flow. There is no negative Im(β ) in Fig. 13 within
the ranges of α1 and α3. On the contrary, there are negative values of Im(β ) in Fig. 12 within the
same range of α1 and α3. For the same m/u0 (which is also very small here), therefore, the increment
in Re increases the range of α1 and α3, which gives rise to positive Im(β ) and hence increases the
chance of making the system unstable. Figures 14 and 15 make this point even clearer. These two
figures represent the variation of Im(β ) (� 0) in three dimensions as a function of α1 and α3 for
Re = 102 and 1010, respectively, for m/u0 = −10−2 for plane Couette flow.

FIG. 14. Variation of Im(β ) in three dimensions as a function of α1 and α3 for Re = 102 and m/u0 = −10−2

for plane Couette flow.
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FIG. 15. Variation of Im(β ) in three dimensions as a function of α1 and α3 for Re = 1010 and
m/u0 = −10−2 for plane Couette flow.

It is also expected that if we increase the magnitude of m/u0, the system becomes more unstable
as in the case of Keplerian flow. This phenomenon also happens here but in a different way.
Figures 16 and 17 show the variation of Im(β ) as a function of α1 and α3 for Re = 102 and 1010,
respectively, and for m/u0 = −10 for plane Couette flow. However, if we compare carefully Fig. 12
(or Fig. 13) with Fig. 16 (or Fig. 17), we see that Fig. 16 (or Fig. 17) has a larger range of α1 and α3

to give rise to positive Im(β ).

IV. ARGAND DIAGRAM

The time variation of the perturbations is given by

u, ζ ∼ e−iRe(β )t eIm(β )t . (15)

FIG. 16. Variation of Im(β ) as a function of α1 and α3 for Re = 102 and m/u0 = −10 for plane Couette
flow.
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FIG. 17. Variation of Im(β ) as a function of α1 and α3 for Re = 1010 and m/u0 = −10 for plane Couette
flow.

In Sec. III we show that Im(β ) has a positive value within a certain range of α1 and α3. For
those values of α1 and α3, therefore, e[Im(β )]t increases exponentially with time. On the other hand,
e−i[Re(β )]t is oscillatory in time. The real part of the temporal variation of the perturbation is

Re(u), Re(ζ ) ∼ cos[Re(β )t]eIm(β )t . (16)

Here we observe the variation of Im(β ) as a function of Re(β ). Figure 18 shows Argand diagrams
for Re = 10, 102, 103 for fixed α1 (=1) and m/u0 = 10 by varying α3 in case of the Keplerian
flow. We observe that Im(β )max, i.e., the maximum growth rate, increases as we increase Re for a
fixed m/u0. Figure 19 shows the Argand diagrams for Re = 104, m/u0 = 10 and for α1 = 1.0, 5.0
and 10.0 for the Keplerian flow, where for each α1, we vary α3 from −2000 to 2000. From Fig. 19
it is clear that as we decrease α1, Im(β )max increases. For smaller α1, therefore, the system becomes
unstable at smaller time and plausibly becomes turbulent for those α1 first.

The phenomenon of increment in the maximum growth rate with decreasing α1 is described
through the energy of perturbations in Fig. 20. Here [Re(u)]2 represents the temporal evolution of
energy corresponding to the x component of the perturbed velocity field for Im(β )max and Re(β )max

corresponding to three different α1, Re = 104 for m/u0 = 10 in the case of the Keplerian flow. In
Fig. 20 the maximum value along the vertical axis is 104. We consider this value to be the limit
of linearity following Ref. [45]. We notice that the higher Im(β )max has higher Re(β )max, i.e., the
higher growth rates have the higher frequency.

It is always interesting to check what happens to the Im(β )max if m/u0 increases for the same Re.
Figure 21 shows the variation of Im(β )max as a function of m/u0, for α1 = 1, 5, 10 for Re = 104

for the Keplerian flow. Here we notice that Im(β )max increases as we increase m/u0. However, at
larger m/u0, the Im(β )max becomes almost independent on α1. At higher m/u0, the extra force and
Re almost completely take control of the system of a fixed q. This phenomenon can be explained
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Re

Re Re Re

FIG. 18. Argand diagram for Re = 10, 100 and 1000 for m/u0 = 10 and α1 = 1.0 for the Keplerian flow.
For each Re, α3 is varied from −2000 to 2000.

from (11). At large m/u0, (11) becomes

β ∼ − 0.5i

3α2
1q + α2

3q

[
mq

u0
− 1

Re

(
24iα3α

2
1mqRe2

u0
+ 8iα3

3mqRe2

u0
+ m2q2Re2

u2
0

− 8α4
1mq2Re

u0

) 1
2
]
.

(17)

Re

FIG. 19. Argand diagram for Re = 104, m/u0 = 10 and for α1 = 1.0, 5.0, and 10.0 for the Keplerian flow.
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[Re(u)]2; Re

[Re(u)]2;

[Re(u)]2;

Re

Re

FIG. 20. Variation of [Re(u)]2 as a function of time, for Re(β )max and Im(β )max from Fig. 19 corresponding
to α1 = 1.0, 5.0, and 10.0.

We obtain Eq. (17) from Eq. (11) by retaining the terms that involve with m/u0 as the magnitude of
other terms become negligible compared to those involving with m/u0. From Eq. (17) it is evident
that as m/u0 increases, the effect of α1 on β and, hence, Im(β ) decreases.

Re

FIG. 21. Variation of Im(β )max as a function of m/u0, for α1 = 1, 5, 10 and Re = 104 for the Keplerian flow.
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Re
FIG. 22. Argand diagram for Re = 104, m/u0 = 102 and for α1 = 1.0, 5.0, and 10.0 for the Keplerian flow.

To make the study complete, we should have enough comparison among Argand diagrams like
Fig. 19 but with different m/u0 and Re. Figure 22 represents the Argand diagrams for Re = 104 and
m/u0 = 102 for three values of α1 mentioned in the figure where α3 is varied from −2000 to 2000
for each value of α1. Here we see that, Im(β )max and Re(β )max for three different α1 are greater
than those for m/u0 = 10. We, therefore, confirm that as m/u0 increases the values of Im(β )max

and Re(β )max also increase. Figures 23 and 24 show the Argand diagrams for Re = 1010 but for
m/u0 = 10 and 102, respectively, for three different α1 as shown in the corresponding figures, and
for each α1, we vary α3 from −100 000 to 100 000. If we compare between Figs. 19 and 23 (and
between Figs. 22 and 24), we notice that Im(β )max and Re(β )max do not change as we increase Re
for a fixed m/u0 (= 10), but the range of α1, that gives rise to positive Im(β ), does increase, as the
positive area under the curve increases with increasing Re.

V. COMPARISON OF VARIOUS TIMESCALES

In Sec. III we obtain the dispersion relation for the linear perturbation in the presence of Coriolis
force and extra force for the Keplerian flow as well as plane Couette flow. It shows that there is a
range of wave vectors in which Im(β ) is positive. On the other hand, we also see the presence of
temporal oscillation in the linear perturbation due to the presence of Re(β ) in Sec. IV. It, therefore,
is important to compare the time period of the temporal growth of the perturbation with the infall
timescale. To calculate the infall timescale of the fluid parcel, we need the radial component of
velocity of the flow in the Keplerian disk, and it is given by (see e.g., Ref. [7])

vr (R) = 2.7×104 × α
4
5
s

(
Ṁ

1016

) 3
10

(
M

M	

)− 1
4
(

R

1010

)− 1
4

[
1 −

(
R∗
R

)1/2
]−7/10

cm s−1, (18)

where αs is the Shakura-Sunyaev viscosity parameter, Ṁ is the mass accretion rate, M is the mass
of the accretor, R is the radius where the analysis is done, R∗ is the radius of the accretor and for a
nonrotating black hole it will be the Schwarzschild radius (Rs = 2GM/c2, where G is gravitational
constant, c is the speed of light in free space), and M	 is the solar mass. The time it takes for a fluid
parcel to reach 3Rs from 100Rs for a 10M	 accretor is ∼8×103 s, if αs = 0.1. The time period of
the perturbations will be [2π/Re(β )max]

√
R3/GMq2 s. From Fig. 19 we obtain Re(β )max to be 1.03,
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Re
FIG. 23. Argand diagram for Re = 1010, m/u0 = 10 and for α1 = 1.0, 5.0, and 10.0 for the Keplerian flow.

Re
FIG. 24. Argand diagram for Re = 1010, m/u0 = 102 and for α1 = 1.0, 5.0, and 10.0 for the Keplerian flow.
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0.48, and 0.3 for α1 to be 1, 5, and 10, respectively. The time period corresponding to these cases
will be 0.57, 1.22, and 1.95 s, respectively. These timescales are very tiny in comparison with the
infall timescale of the matter to fall from 100Rs; i.e., the fluid parcel gets enough time to be unstable
before it ultimately falls into the black hole. Our theory, therefore, passes the first check.

Now the crucial and more important point is how much time the fluid parcel takes to cross the
shearing box itself along the radial direction. We consider the size of the shearing box to be 0.05Rs

(see Ref. [18]), and it is situated at 100Rs. With these configurations, the fluid parcel takes around
5.34 s to cross the box. This timescale is also greater than the time period of the temporal oscillation
of the perturbation.

Apart from the timescale corresponding to temporal oscillation of the perturbation, there is
another timescale involved in the system, and it is at which time the system enters into the nonlinear
regime. From Fig. 20, it is clear that [Re(u)]2 for α1 = 10 enters into the nonlinear regime for
the first time at t ∼ 9. To convert it into the unit of second, we have to multiply it with a factor√

R3/GMq2, which is around 0.09 s for the considered system. It, therefore, takes around 0.8 s for
the fluid parcel to enter into the nonlinear regime if we consider α1 = 10, Re = 104, m/u0 = 10.

It is very important to have the wavelength of the perturbation inside the box. It, therefore, is
necessary to have the maximum wavelength of the perturbation to be equal to the size of the box.
The wavelength of the perturbation along the x direction is 2π/α1 in dimensionless units. To make
it dimensional, we have to multiply the size of the box (0.05Rs) with it. Those α1 which are greater
than 2π , therefore, describe the best dynamics of the fluid parcel inside the box. This is the reason
behind showing the temporal evolution of [Re(u)]2 with corresponding Im(β )max and Re(β )max for
fixed Re and α1 = 10 (>2π ) for m/u0 = 10 and 102.

VI. CONCLUSION

Instability and hence turbulence become inevitable for the fluid parcel inside the shearing box at
the small region of the accretion disk. This instability is also controlled by Re and the strength of
the extra force which is white noise with nonzero mean (m). The presence of noise is very natural. It
may arise from small thermal fluctuation present in the systems (see, e.g., Ref. [50]). The presence
of the noise in the systems can be due to the disturbances of arbitrary origins [51]. However, in
the astrophysical context, particularly in accretion disks, the examples of the origin of such forces
could be the interaction between the dust grains and the fluid parcel in protoplanetary disks (e.g.,
Ref. [52]); back reactions of outflow/jet to accretion disks; and external forcing of the disk, i.e., tidal
forcing, shock wave debris, outbursts, or internal forcing by nonlinear terms [53,54]. These forces
are also expected to be stochastic in nature.

Once the instability and therefore turbulence kick in inside the shearing box, we consider
the shearing box repeatedly throughout the radial extension of the accretion disk, and hence the
transport of angular momentum can be interpreted in the Keplerian accretion disk. However, for
plane Couette flow, there is no requirement of infall. Hence, in the presence of noise, it is always
expected to lead to instability.
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APPENDIX: DISPERSION RELATIONS FROM ORR-SOMMERFELD AND SQUIRE
EQUATIONS IN THE FOURIER SPACE

The solutions of Eqs. (1) and (2) in the Fourier space will be

ψ̃k,ω =
(

1

2π

)4 ∫ ∞

−∞
ψ (x)ei(α·r−βt )e−i(k·r−ωt ) d3x dt

= 1

2π
δ(α2 − ky)δ(α3 − kz )δ(β − ω)

∫ ∞

−∞
ψ (x)ei(α1−kx )xdx,

where ψ will be any of u and ζ .
We now integrate Eqs. (6) and (7) with respect to k and ω. Each term of Eq. (6) after the

integration, assuming the WKB approximation, i.e., neglecting second and higher derivatives of
u and ζ , is obtained as follows:

(1) ∫ ∞

−∞
kyk2 ∂ ũk,ω

∂kx
d3k dω =

∫ ∞

−∞
ky(k2

x + k2
y + k2

z )
∂ ũk,ω

∂kx
d3k dω

= 1

2π

∫ ∞

−∞
ky(k2

x + k2
y + k2

z )δ(α2 − ky)δ(α3 − kz )

×
[

∂

∂kx

∫ ∞

−∞
dx′u(x′)ei(α1−kx )x′

]
dkx dky dkz

= −2α1α2u(0) + 2iα2u′(0),

(2) ∫ ∞

−∞
iωk2ũk,ω d3k dω = iβ[α2u(0) − 2iα1u′(0)],

(3) ∫ ∞

−∞
2kxkyũk,ω d3k dω = −2iα2[u′(0) + iα1u(0)],

(4) ∫ ∞

−∞

k4

Re
ũk,ω d3k dω = α4

Re
u(0) − 4

Re
iα1α

2u′(0),

(5) ∫ ∞

−∞

2ikz

q
ζ̃k,ω d3k dω = 2iα3

q
ζ0,

(6) ∫ ∞

−∞
m1δ(k)δ(ω) d3k dω = m1.

We collect all these terms and obtain the first part of Eq. (9). Following the same method, we
also obtain the second part of Eq. (9) from Eq. (7).
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