Sharma, L and Adiga, SP and Alshareef, HN and Barpanda, P (2020) Fluorophosphates: Next Generation Cathode Materials for Rechargeable Batteries. In: Advanced Energy Materials .
PDF
ADV_ENE_MAT_2020.pdf - Published Version Restricted to Registered users only Download (5MB) | Request a copy |
Abstract
Cost, safety, and cycle life have emerged as prime concerns to build robust batteries to cater to the global energy demand. These concerns are impacted by all battery components, but the realizable energy density of lithium-ion batteries (LIBs) is limited by the performance of cathodes. Thus, cathode materials have a significant role to play in advancing the performance and economics of secondary batteries. To realize next generation Li-ion and post Li-ion batteries, a variety of cathode insertion materials have been explored, but finding a cost effective and stable cathode material that can deliver high energy density has been a daunting task. Oxide cathode materials are ubiquitous in commercial applications, as they can deliver high capacity. In comparison, polyanionic insertion materials can offer tuneable (high) redox potential, operational safety, and structural as well as thermal stability. Indeed, a wide range of polyanionic materials like phosphates, borates, sulfates, and their complexes have been reported. In this article, the alkali metal fluorophosphates class of polyanionic cathodes for secondary batteries is discussed. The various reported fluorophosphate insertion materials are discussed in terms of their electrochemical and electrocatalytic properties. The historical overview, recent progress, and remaining challenges for polyanionic fluorophosphates are presented along with suggested future research directions and potential application. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Item Type: | Journal Article |
---|---|
Publication: | Advanced Energy Materials |
Publisher: | Wiley-VCH Verlag |
Additional Information: | Copy right for this article belongs to Wiley-VCH Verlag |
Keywords: | Cathode materials; Cathodes; Cost effectiveness; Ions; Redox reactions; Sulfur compounds, Commercial applications; Electrocatalytic properties; Future research directions; Global energy demand; High energy densities; Insertion materials; Operational safety; Polyanionic materials, Lithium-ion batteries |
Department/Centre: | Division of Chemical Sciences > Materials Research Centre |
Date Deposited: | 11 Nov 2020 06:46 |
Last Modified: | 11 Nov 2020 06:46 |
URI: | http://eprints.iisc.ac.in/id/eprint/66198 |
Actions (login required)
View Item |