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Abstract
Recently we found that the sufficient condition in the
main result of our paper entitled “Heisenberg unique-
ness pairs for the hyperbola, Bull. Lond. Math. Soc. 53
(2021), no. 1, 16–25” is incorrect. The purpose of this cor-
rigendum is to point out the gap in the proof given in
the above-mentioned paper and supply a correct suf-
ficient condition with proof. We prove the following
result: let Γ be the hyperbola 𝑥𝑦 = 1 in ℝ2, and Λ𝛽,𝜃

be the lattice-cross defined by Λ𝛽,𝜃 = ((ℤ + {𝜃}) × {0}) ∪

({0} × 𝛽ℤ), where 𝜃 ∈ ℝ, and 𝛽 > 0. Then (Γ, Λ𝛽,𝜃) is a
Heisenberg uniqueness pair for 𝛽 ⩽ 1.
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1 INTRODUCTION

The aim of this paper is to correct the statement of [2, Theorem 1.4] which should be as follows.

Theorem 1.1. Let Γ = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥𝑦 = 1} be the hyperbola and Λ𝜃
𝛽
be the lattice-cross Λ𝜃

𝛽
=

((ℤ + {𝜃}) × {0}) ∪ ({0} × 𝛽ℤ), where 𝛽 is a positive real and 𝜃 = 1∕𝑝, for some 𝑝 ∈ ℕ. Then (Γ, Λ𝜃
𝛽
)

is a Heisenberg uniqueness pair whenever 𝛽 ⩽ 1. Conversely, if (Γ, Λ𝜃
𝛽
) is a Heisenberg uniqueness

pair (HUP), then 𝛽 ⩽ 𝑝.

The necessity of the condition 𝛽 ⩽ 𝑝was proved in [2] and this part is correct. However, we also
stated the converse which is unfortunately not true. The aim of this note is to give a counterexam-
ple to show that the converse stated in [2, Theorem 1.4] is not correct and we also indicate where
the mistake lies in the argument given in [2].
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2 CORRIGENDUM

For 𝑝 ⩾ 2 and 𝛽 = 𝑝, we can construct a counterexample to show that (Γ, Λ𝜃
𝛽
) is not an HUP.

To see this, following [1, p. 3, Equation 1.2] we can choose a non-zero function 𝐻𝑝𝑛0
∈ 𝐿1(ℝ) ∩

𝐶∞(ℝ), 𝑛0 ∈ ℕ such that for 𝑛 ∈ ℤ, 𝑚 ∈ ℤ ⧵ {0}

∫ℝ

𝑒𝜋𝑖(𝑛+1∕𝑝)𝑥𝐻𝑝𝑛0
(𝑥∕𝑝)𝑑𝑥 = 𝛿𝑛𝑝+1,𝑝𝑛0

= 0 and ∫ℝ

𝑒𝜋𝑖𝑚𝑝∕𝑥𝐻𝑝𝑛0
(𝑥∕𝑝)𝑑𝑥 = 0

with ∫
ℝ

𝐻𝑝𝑛0
(𝑥∕𝑝)𝑑𝑥 = 𝛿0,𝑝𝑛0

= 0. Therefore, for 𝛽 = 𝑝 it is immediate that if we consider the
measure 𝑑𝜇(𝑥) = 𝐻𝑝𝑛0

(𝑥∕𝑝)𝑑𝑥, then �̂�|Λ𝜃
𝛽

= 0 but 𝜇 is non-zero.

As in [2], let 𝐿∞
𝑝 (ℝ) denote the space of all functions 𝑓 ∈ 𝐿∞(ℝ) such that the map 𝑥 ⟼

𝑒−𝜋𝑖𝑥∕𝑝𝑓(𝑥) is 2-periodic. Then the weak-star closure in 𝐿∞(ℝ) of the linear span of functions
{𝑒

𝑝
𝑛 (𝑥) = 𝑒𝜋𝑖(𝑛+1∕𝑝)𝑥; 𝑛 ∈ ℤ} is 𝐿∞

𝑝 (ℝ). In [2], we erroneously had assumed that the space 𝐿∞
𝑝 (ℝ)

equals the space of all 2𝑝-periodic functions in 𝐿∞(ℝ). Therefore, our assumption in the proof of
[ [2], Theorem 2.4] that “The proof is similar to the proof of [12, Lemma 5.2] ” does not work for
0 < 𝛽 ⩽ 𝑝. Next, we have the following result.

Theorem 1.2. Let Γ be the hyperbola 𝑥𝑦 = 1 in ℝ2, and Λ𝛽,𝜃 be the lattice-cross defined by

Λ𝛽,𝜃 = ((ℤ + {𝜃}) × {0}) ∪ ({0} × 𝛽ℤ), (1.1)

where 𝜃 ∈ ℝ, and 𝛽 > 0. Then (Γ, Λ𝛽,𝜃) is an HUP for 𝛽 ⩽ 1.

Proof of Theorem 1.2 follows on similar lines as the proof of [4, Theorem 1.6.1] together with [4,
Proposition 3.13.1(b)] for the case 0 < 𝛽 < 1 and [4, Proposition 3.13.3] for the case 𝛽 = 1, respec-
tively. However, for the sake of completeness, we briefly summarize the proof of Theorem 1.2.
Suppose that there exists 𝑓 ∈ 𝐿1(ℝ) such that

∫ℝ

𝑒𝑖𝜋(𝑚+𝜃)𝑡𝑓(𝑡)𝑑𝑡 = ∫ℝ

𝑒𝑖𝜋𝑛𝑡𝑓

(
𝛽

𝑡

)
𝑑𝑡

𝑡2
= 0, 𝑚, 𝑛 ∈ ℤ. (1.2)

Let ℤ× = ℤ ⧵ {0} and 0 < 𝛽 < 1. Observe that for any ℎ ∈ 𝐿1(ℝ)

∫ℝ

𝑒𝑖𝜋𝑚𝑡ℎ(𝑡)𝑑𝑡 = 0 for all 𝑚 ∈ ℤ if and only if
∑
𝑗∈ℤ

ℎ(𝑡 + 2𝑗) = 0 a.e. on ℝ. (1.3)

In particular, consider ℎ(𝑡) = 𝑒𝜋𝑖𝜃𝑡𝑓(𝑡) in (1.3) and ℎ(𝑡) = 1

𝑡2 𝑓(
𝛽

𝑡
) in (1.3), respectively. Thus

from (1.2) we get that

|𝑓(𝑡)| ⩽
∑

𝑗∈ℤ×

|𝑓(𝑡 + 2𝑗)| and 1

𝑡2
𝑓

(
𝛽

𝑡

)
+

∑
𝑗∈ℤ×

1

(𝑡 + 2𝑗)2
𝑓

(
𝛽

𝑡 + 2𝑗

)
= 0 a.e. on ℝ. (1.4)

Combining both the conditions in (1.4), after invoking the change of variables 𝑡 ↦ 𝛽∕𝑡 in the
second identity of (1.4), we get that

|𝑓(𝑡)| ⩽
∑

𝑗,𝑘∈ℤ×

𝛽2

[2𝑗(𝑡 + 2𝑘) + 𝛽]2

||||𝑓
(

𝛽(𝑡 + 2𝑘)

2𝑗(𝑡 + 2𝑘) + 𝛽

)|||| a.e. on ℝ. (1.5)
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A simple calculation shows that if we restrict 𝑓 to the interval 𝐼 ∶= (−1, 1], then the identity (1.5)
reduced to

|𝑓(𝑡)| ⩽ T2
𝛽
|𝑓|(𝑡) a.e. 𝑡 ∈ 𝐼. (1.6)

where the operator T𝛽 ∶ 𝐿1(𝐼) ⟶ 𝐿1(𝐼) is given by T𝛽𝑓(𝑥) =
∑

𝑗∈ℤ×
𝛽

(𝑥+2𝑗)2 𝑓(−
𝛽

𝑥+2𝑗
). For the

details about the map T𝛽 , see [4]. Since T𝛽 preserves the cone of positive functions and from
(1.6) we have T2

𝛽
|𝑓| − |𝑓| ⩾ 0, it follows that T4

𝛽
|𝑓| ⩾ T2

𝛽
|𝑓|. By repeating the same argument, for

𝑁 ∈ ℕ, we get that T2𝑁
𝛽

|𝑓| ⩾ |𝑓| a.e. on 𝐼. Now, for 0 < 𝛽 < 1, in view of [4, Proposition 3.13.1(b)],
it implies that T2𝑁

𝛽
|𝑓| ⟶ 0 in 𝐿1(𝐼) as 𝑁 ⟶ ∞, and hence, (1.6) implies that 𝑓 = 0 a.e. on 𝐼.

Then from the second identity in (1.4) we get that 𝑓 = 0 a.e. on ℝ ⧵ 𝐼. Thus 𝑓 = 0. Finally, for
𝛽 = 1 it follows from (1.6) and [4, Proposition 3.13.3] that 𝑓 = 0 a.e. on 𝐼. Now, from the second
identity in (1.4) we get that 𝑓 = 0 a.e. on ℝ ⧵ 𝐼. Thus 𝑓 = 0.
However, all the proofs of [2, Theorem 1.4] remain correct if we replace Λ𝜃

𝛽
, where 𝜃 = 1∕𝑝

in [2, Theorem 1.4] by the new lattice-cross Λ̃𝛽,𝑝 = ( 1

𝑝
ℤ × {0}) ∪ ({0} × 𝛽ℤ) with the following

modifications.

(a) Replace (𝑛 + 1∕𝑝) by 𝑛∕𝑝, where 𝑛 ∈ ℤ.
(b) Let∞

𝑝 (ℝ) denote the space of all 2𝑝-periodic functions in 𝐿∞(ℝ). Then the weak-star closure
in 𝐿∞(ℝ) of the linear span of the functions {𝑒

𝑝
𝑛 (𝑥) = 𝑒𝜋𝑖𝑛𝑥∕𝑝; 𝑛 ∈ ℤ} equals to ∞

𝑝 (ℝ).

(c) Let ∞
𝛽

(ℝ) denote the space of all functions 𝑓 ∈ 𝐿∞(ℝ) such that the map 𝑥 ⟼ 𝑓(
𝑝𝛽

𝑥
) is 2𝑝-

periodic. Then the weak-star closure in 𝐿∞(ℝ) of the linear span of the functions {𝑒
𝛽
𝑛(𝑥) =

𝑒𝜋𝑖𝑛𝛽∕𝑥; 𝑛 ∈ ℤ} equals to ∞
𝛽

(ℝ).
(d) Replace the sum space 𝐿∞

𝑝 (ℝ) + 𝐿∞
𝛽

(ℝ) by the new sum space ∞
𝑝 (ℝ) + ∞

𝛽
(ℝ).

(e) 𝐼𝛽(𝑥) = −
𝑝𝛽

𝑥
.

Remark 1.3. In the article [2] with the above modifications, we have proved that (Γ, Λ̃𝛽,𝑝) is an
HUP if and only if 0 < 𝛽 ⩽ 𝑝, where Γ is the hyperbola in the plane. Although this result is imme-
diate from [3], but the modified result in [2] provides an alternate proof without using invariance
properties for HUPs.
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