ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Neural network-based top tagger with two-point energy correlations and geometry of soft emissions

Chakraborty, A and Lim, SH and Nojiri, MM and Takeuchi, M (2020) Neural network-based top tagger with two-point energy correlations and geometry of soft emissions. In: Journal of High Energy Physics, 2020 (7).

JOU_HIG_ENE_PHY_2020_7_2020.pdf - Published Version

Download (2MB) | Preview
Official URL: https://dx.doi.org/10.1007/JHEP07(2020)111


Deep neural networks trained on jet images have been successful in classifying different kinds of jets. In this paper, we identify the crucial physics features that could reproduce the classification performance of the convolutional neural network in the top jet vs. QCD jet classification. We design a neural network that considers two types of sub-structural features: two-point energy correlations, and the IRC unsafe counting variables of a morphological analysis of jet images. The new set of IRC unsafe variables can be described by Minkowski functionals from integral geometry. To integrate these features into a single framework, we reintroduce two-point energy correlations in terms of a graph neural network and provide the other features to the network afterward. The network shows a comparable classification performance to the convolutional neural network. Since both networks are using IRC unsafe features at some level, the results based on simulations are often dependent on the event generator choice. We compare the classification results of Pythia 8 and Herwig 7, and a simple reweighting on the distribution of IRC unsafe features reduces the difference between the results from the two simulations. © 2020, The Author(s).

Item Type: Journal Article
Publication: Journal of High Energy Physics
Publisher: Springer
Additional Information: copy right for this article belongs to Springer
Keywords: Jets, QCD Phenomenology
Department/Centre: Division of Physical & Mathematical Sciences > Centre for High Energy Physics
Date Deposited: 01 Dec 2020 09:37
Last Modified: 01 Dec 2020 09:37
URI: http://eprints.iisc.ac.in/id/eprint/66158

Actions (login required)

View Item View Item