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Abstract: We propose a feature called pitch-synchronous discrete cosine transform (PS-DCT), derived from the voiced
part of the speech for speaker identification (SID) and verification (SV) tasks. PS-DCT features are derived
from the ‘time-domain, quasi-stationary waveform shape’ of the voiced sounds. We test our PS-DCT feature
on TIMIT, Mandarin and YOHO datasets. On TIMIT with 168 and Mandarin with 855 speakers, we obtain
the SID accuracies of 99.4% and 96.1%, respectively, using a Gaussian mixture model-based classifier. In the
i-vector-based SV framework, fusing the ‘PS-DCT based system’ with the ‘MFCC-based system’ at the score
level reduces the equal error rate (EER) for both YOHO and Mandarin datasets. In the case of limited test data
and session variabilities, we obtain a significant reduction in EER, up to 5.8% (for test data of duration < 3
sec).

1 INTRODUCTION

Traditional signal processing based features used in
the literature for speaker identification (SID) and ver-
ification (SV) studies include Mel frequency cep-
stral coefficients (MFCC) (Davis and Mermelstein,
1980), linear prediction residual (Prasanna et al.,
2006), voice source cepstral coefficients (Gudna-
son and Brookes, 2008), deterministic plus stochas-
tic model (Drugman and Dutoit, 2012) and MFCC
with phase (Nakagawa et al., 2012), etc. Except the
MFCC, all the above mentioned features are based on
voice source. MFCC are motivated by human audi-
tory perceptual mechanism and it primarily captures
the vocal-tract information.

In contrast, we propose a feature, which exploits
the time-domain, quasi-periodic waveform shape of
the voiced phones. Since the voiced regions are rel-
atively stationary, each period of any voiced phone
must contain information from both the vocal folds
and the vocal tract of the speaker, in addition to the
phonemic information. This point of view motivated
us to derive another traditional signal processing
based feature, which is proposed in this work. To cap-
ture the time-domain waveform shape of the voiced
phones, we employ discrete cosine transform (DCT),
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which is a reversible, linear transformation, with fre-
quency resolution twice that of discrete Fourier trans-
form. Since DCT has energy compaction property, it
can capture the waveshape of any voiced phone for
any pitch cycle in a limited number of coefficients.

The pitch-synchronous DCT analysis is obviously
valid only for the voiced regions of speech. Pitch-
synchronous analysis is important as DCT is shift-
variant. Therefore, we avoid unvoiced segments of
the speech. We consider each pitch cycle from the
voiced segments as an analysis frame and perform
DCT of a fixed length, after zero-padding the anal-
ysis frame. Hence, the DCT of different cycles for
the same phone for a particular speaker are expected
to show similar trends. Pitch synchronous analysis of
voiced sounds was reported in (Mathews et al., 1961)
to show that vowel sounds can be represented by a se-
quence of poles arising from the vocal tract and a se-
quence of zeros characterizing the glottal excitation.
Similarly, DCTILPR (Abhiram et al., 2015), the pitch
synchronous DCT of the integrated linear prediction
residual (ILPR) was proposed for the task of speaker
identification. In our work, DCT is applied on the
speech signal itself as opposed to the case of DC-
TILPR, where DCT is applied on ILPR, which con-
tains only the voice source information. Also, we use
uniform length DCT basis as opposed to the above
work (Abhiram et al., 2015), where variable length
DCT basis is used.
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Figure 1: Extraction of the proposed PS-DCT features from the speech signal.

2.86 2.88 2.9 2.92 2.94 2.96 2.98 3 3.02 3.04 3.06

Sample index 10 4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
m

p
li

tu
d

e

Figure 2: GCI locations of a voiced region of an utterance from the TIMIT dataset, after mapping them to the nearest zero-
crossings (dotted vertical lines).

The major contributions of this paper are:

• Proposing a novel feature named PS-DCT, de-
rived using traditional signal processing ideas,
which can be used for speaker identification and
verification.

• Showing that fusing the ‘PS-DCT based SV sys-
tem’ with the ‘MFCC-based SV system’ improves
the performance of speaker verification system for
limited test data (see Table 4).

In a nutshell, we propose a feature named PS-
DCT, which when combined with the conventional
MFCC-based system, boosts the performance of the
SV/SID system. PS-DCT possesses both voice source
and vocal tract information, thus providing supple-
mentary information to the MFCC-based SV/SID.
This is crucial for short-utterances, since the perfor-
mance drops significantly with less test data, even
when the training data is sufficient (Das et al., 2014).
By combining the systems based on MFCC and PS-
DCT at the score level, good SV performance is ob-
tained.

2 EXTRACTION OF THE
PROPOSED PS-DCT FEATURES

Figure 1 shows the method of extraction of the PS-
DCT features as a block diagram. Since we are
extracting the features from the voiced part of the
speech, we need to separate voiced and unvoiced
speech. For this purpose, we have used normalized
autocorrelation at unit sample delay. By using this
method with empirically obtained threshold values,

we take only voiced part of the speech and discard
all the unvoiced/silence part of the speech. The al-
gorithm proposed in (Prathosh et al., 2013) is used
on these voiced regions for getting the glottal closure
instants (GCI). The obtained GCI locations are then
mapped to the nearest zero-crossings, which obviates
the scenario of abrupt onset and ending of the signal
in the analysis frames. In Fig. 2, the dotted vertical
lines show the locations of these shifted GCIs. Our
analysis frames correspond to the intervals between
these zero-crossings.

The next block in Fig. 1 is PS-DCT of the anal-
ysis intervals. Let M be the number of samples in a
pitch period. In simple pitch-synchronous analysis,
the value of this analysis interval (M) changes with
the pitch period, which can be different even for con-
secutive pitch cycles. If M-point DCT is used, then
the DCT basis will be different for different analysis
intervals, since M itself varies. Then, the k-th DCT
coefficients of two different speakers (or even for the
same speaker) do not represent the same frequency,
but the same harmonic of their instantaneous funda-
mental frequency. The basis needs to be fixed for
all the speakers, so that it can serve as a reference
and we can obtain the relative distribution of the co-
efficients over the same basis to capture discrimina-
tive, speaker-specific information. In order to make
the length of the analysis frame same (say, L) for all
the pitch cycles for all the speakers, we choose the
maximum number of samples that a pitch cycle can
have as L. Thus L, the length of the basis of DCT, is
determined as (sampling rate)/(minimum pitch under
consideration). The value of L turns out to be 230 or
115, depending upon whether the sampling rate is 16
or 8 kHz, with the minimum pitch value assumed to
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Figure 3: (a), (b), (c), (d): The time-domain waveform shape of one pitch period of the vowel /ah/ for four different speakers
taken from the vowel database (https://homepages.wmich.edu/∼hillenbr/voweldata.html). (e), (f), (g), (h) : 28-dimensional
PS-DCT features derived from the waveforms shown in Figs. a, b, c, d, respectively.

Table 1: Choice of the number (N) of DCT coefficients retained vs SID accuracy (in %) on TIMIT database for 168 speakers
and Chinese Mandarin corpus for 855 speakers.

No. of
Coefficients N 10 12 14 16 18 20 22 24 26 28 30

SID accuracy
(in %)

TIMIT 87.5 90.4 93.4 94.6 95.8 95.8 96.4 96.4 97 99.4 97.6
Mandarin 85.3 89.9 91.3 92.9 94.2 94 94.8 95.3 95.9 96.1 96.1

be 70 Hz. To the signal corresponding to each pitch
period, we append appropriate number of zeros to get
L samples and take L-point DCT.

Before applying DCT, we normalize the analysis
frame by its maximum absolute amplitude.

Then, we truncate the PS-DCT, ensuring that the
retained N-coefficients have the necessary speaker-
specific information. The value of N is chosen exper-
imentally, based on the best SID performance, to be
28 or 56, depending upon the sampling rate. The first
coefficient, being the mean value of the waveform, is
excluded.

For TIMIT and Mandarin corpora, we observe
from Table 1 that the best value of N is 28, determined
empirically. Similarly, N is 56 for YOHO database.

2.1 PS-DCT Captures Speaker-specific
Information

The shapes of the time-domain quasi-periodic wave-
forms of a particular voiced phone are distinct for dif-
ferent speakers, though they look grossly similar as
shown in Fig. 3 (a, b, c, d). Since PS-DCT captures
the temporal waveform shape of a period, even for the
same voiced phone (eg. /ah/), it is distinct for different

speakers as shown in Fig. 3 (e, f, g, h). In other words,
for a particular voiced phone, the PS-DCT gives the
distinct distributions of the coefficients over the same
fixed basis for different speakers, thus capturing dis-
criminative speaker-specific information.

3 EXPERIMENTAL DETAILS OF
THE STUDY

3.1 Speaker Identification (SID) Studies

Experiments are conducted on TIMIT (Garofolo
et al., 1993), YOHO (Campbell and Higgins,
1994) and Chinese Mandarin (https://openslr.org/38/)
databases for text-independent SID. TIMIT consists
of data from 630 speakers, sampled at 16 kHz. For our
study, we use data from randomly selected 168 speak-
ers. Of the ten utterances available for each speaker,
feature vectors obtained from 8 sentences are used for
training and 2 sentences for testing. Chinese Man-
darin corpus has a total of 102600 utterances from 855
speakers. Each speaker has 120 utterances, sampled
at the rate of 16 kHz. For all the speakers, 8 utterances
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are used for training and features obtained from 2 ut-
terances, for testing. The YOHO database with four
different recording sessions is used to compare the
performance of the features under session variability.
It is sampled at 8 kHz, and we use recordings from
138 speakers. For each speaker, from the first ses-
sion, the first 20 utterances are used for training and
from all the four sessions, the features obtained from
the next four utterances are together used for testing.

The feature vectors extracted from the training
data are scaled to unit norm. Using these features,
we model each speaker by 32-component Gaussian
mixture with diagonal covariance matrix, denoted by
Sθ. Here, θ denotes the model parameters (mean
µ, covariance Σ and weights w of mixture compo-
nents). The same GMM configuration is used for all
the databases, and for MFCC features also. The test
data is classified as belonging to the speaker having
the maximum per-sample average log-likelihood, ob-
tained as,

L(θ|x) = 1
n

n

∑
i=1

log(Sθ (xi)) (1)

where, Sθ (xi) = ∑
k
j=1 w j f (xi|µ j,Σ j); k (=32) is the

number of mixture components and n is the number of
feature vectors [x = (x1,x2,x3, ....,xn)] available in the
test data. The modelling and likelihood estimation are
performed using scikit-learn (Pedregosa et al., 2011).

The performance of PS-DCT features is compared
with those of the existing glottal based features and
13-dimensional MFCCs. MFCCs are computed only
from the voiced segments of the speech signal for all
the databases, so that the comparison is fair. A frame
length of 30 ms with Hanning window and a frame
shift of 10 ms are used for computing the MFCC fea-
tures. The GMM described above is used for the
MFCC features also. The other features compared
are: (i) the deterministic plus stochastic model (DSM)
of the residual signal, proposed by Drugman and Du-
toit (Drugman and Dutoit, 2012), which they used for
SID. (ii) DCT of the integrated linear prediction resid-
ual (ILPR), proposed in (Abhiram et al., 2015), where
ILPR is used as a voice source estimate. The results
reported for these two features are taken from the lit-
erature.

3.2 Speaker Verification (SV) Studies

An i-vector based speaker verification system has
been implemented using Microsoft Identity Toolbox
(Sadjadi and Omid, 2013)for this work. Entire TIMIT
database and a subset of Mandarin corpus (7000 ut-
terances from 700 speakers) are used as develop-
ment data for obtaining universal background model

(UBM) of 256 mixtures and total variability subspace
(T-matrix of 400 columns). Totally, we are using ap-
proximately 12 hours of data from 542 female and
788 male speakers. From the YOHO database, we
have used recordings from four sessions of each of
138 speakers for training their speaker models and
evaluating the performance. Verification trials con-
sist of all possible model-test combinations, resulting
in a total of 19,044 (138×138) trials (138 target ver-
sus 18,906 impostor trials). From the first session, we
have used the first 20 utterances from each speaker as
enrollment data for training speaker models and from
all the four sessions, the data obtained from the next
four utterances are used for testing. From Mandarin
corpus, 24,025 trials (155 target versus 23,870 impos-
tor trials) from 155 speakers are used for testing. 10
utterances from each speaker are used for enrollment
and data from four utterances are used for testing.

In i-vector based SV systems, both the training
and test segments are represented by i-vectors. The
dimensionality of the i-vectors is reduced using 200-
dimensional linear discriminant analysis (LDA) to re-
move channel directions in order to increase the dis-
crimination between speaker subspaces. The Baum-
Welch statistics (Dehak et al., 2011) are computed
from the training and test feature vectors. Using this
statistics along with T-matrix, we compute the train
and test i-vectors. After mean and length normaliza-
tion (Garcia-Romero and Espy-Wilson, 2011), the i-
vectors are modelled via a generative factor analysis
approach called the probabilistic LDA (PLDA). Af-
ter that, a whitening transformation is applied, which
is learned from the i-vectors of the development set
(Sadjadi and Omid, 2013). Finally, a linear strategy
is used for scoring the verification trials (Sadjadi and
Omid, 2013), which computes the log-likelihood ratio
of same to different speakers’ hypotheses.

Separate SV experiments are performed using
MFCCs, PS-DCT and their score level combination.
For more details about the implemented SV system,
one can refer to Microsoft Identity Toolbox (Sadjadi
and Omid, 2013). We have extracted 13 MFCCs
with their delta and delta-delta coefficients to form
39-dimensional feature vectors. Cepstral mean and
variance normalization (CMVN) is used for further
processing. Since the dimension of PS-DCT depends
on the sampling rate, we have extracted PS-DCT fea-
tures after re-sampling all the utterances to 8 kHz. 56-
dimensional PS-DCT features are obtained as men-
tioned in Sec. 2. Since PS-DCT is not in the cep-
stral domain, we have not applied CMVN. Instead,
we have scaled the feature vectors individually to unit
norm (feature vector length) for post-processing.
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Table 2: Identification accuracies (in %) on 168 speakers from the TIMIT database, 855 from the Chinese Mandarin corpus
and 138 from the YOHO database for four different recording sessions.

Datasets DCTILPR DSM PS-DCT MFCC
TIMIT 94.6 98.0 99.4 99.4

Mandarin NA NA 96.1 98.1
YOHO

(Same session) 100 99.7 100 100

YOHO
(1 session later) 80.4 69.3 86.9 96.3

YOHO
(2 session later) 73.9 64.3 92.0 97.8

YOHO
(3 session later) 72.5 58.7 80.4 91.3

4 RESULTS AND DISCUSSION

4.1 Results of Speaker Identification
Experiments

Table 2 shows that the PS-DCT, MFCC and DSM
features perform well on TIMIT dataset. To confirm
our hypothesis that the pitch-synchronous analysis of-
fers an advantage, we also extracted DCT features
using the traditional fixed length windows. With a
frame length of 20 ms and a frame shift of 10 ms,
we obtained a maximum accuracy of 75% using 30
coefficients on TIMIT dataset. However, the best
accuracy of 88.6% is obtained with a frame length
of 10 ms, shift of 5 ms and 50 coefficients. Thus,
the performance of PS-DCT at 99.4% is far superior,
and hence, for the rest of the databases, we experi-
mented only with PS-DCT. On YOHO dataset, PS-
DCT achieves better results than those of DCTILPR
and DSM, though it also suffers from session vari-
ability. On Mandarin corpus, PS-DCT performs well
(96.1%), but not better than MFCCs. By observing
the performance of PS-DCT on various datasets, we
can see that it has potential to capture speaker specific,
discriminative information.

4.2 Results of Speaker Verification
Experiments

In real world deployment, the SV systems need a min-
imum duration of test data for robust performance. In
some applications, this may not be possible, which
leads to poor system performance. Hence, it is of
interest to build a SV system that can perform bet-
ter even when the data available for testing is lim-
ited. Later, we see that PS-DCT-based SV system
can boost the performance of MFCC-based SV sys-
tem significantly under limited test data condition.

Table 3 shows the results obtained on YOHO
database and Mandarin corpus for 19,044 and 24,055
trials, respectively, using both MFCC and PS-DCT
features. Table 3 shows that when the duration of the
test data is low (< 4 sec), the EER is quite higher
than the case where the duration of the test data is
higher (> 4 sec) for both the features. Here, PS-DCT
alone does not perform as good as MFCC. In an ear-
lier study (Das et al., 2014), it has been shown that
fusing MFCCs and other feature based classifiers us-
ing a convex combination improves the performance
of the speaker verification system significantly. So,
here also we have applied a convex combination at the
score level to get the score for the combined system
as follows:

SCOMB = λSPS-DCT +(1−λ)SMFCC (2)

where, SCOMB, SPS-DCT and SMFCC are the scores ob-
tained from the combined, PS-DCT and MFCC based
SV systems, respectively. λ is a scalar between 0 and
1.

Using the combined score SCOMB improves the
performance of the SV system significantly for both
the databases, specifically when the duration of the
test data is limited (< 3 sec). The best value of λopt
is experimentally determined to be 0.4 for both the
databases. Table 4 shows the performance of the com-
bined system for both YOHO and Mandarin databases
along with the absolute improvement in EER (in %).
For YOHO database, the performance of the com-
bined system is higher for all the sessions for all
the durations of the test data. The performance im-
provement is significantly high (up to 5.8% in abso-
lute terms) for very limited duration of the test data
(1.5 sec). The same is true for Mandarin corpus also,
where the improvement is up to 3.2% for test data of
2 sec. In both these cases, there is sufficient training
data. Table 4 shows that the absolute improvement
in EER over the MFCC system increases as the dura-
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Table 3: Speaker verification performance of MFCC-based (PS-DCT-based) i-vector system on YOHO database and Man-
darin corpus, for different durations of the test data. Number of trials for YOHO: 19,044; Mandarin: 24,025.

YOHO database (equal error rate (EER) in %) Mandarin corpus
Test data
(approx.)

Same
session

1 session
later

2 sessions
later

3 sessions
later

Test data
(approx.)

EER
(%)

1.5 sec 11.5 (12.2) 23.1 (28.2) 18.8 (22.8) 19.5 (25.3) 2 sec 12.2 (16.0)
3 sec 5.2 (7.2) 14.0 (20.2) 9.4 (18.0) 8.7 (18.0) 4 sec 5.1 (9.6)
6 sec 1.4 (4.3) 7.2 (11.0) 7.1 (12.3) 6.5 (16.6) 8 sec 2.6 (5.5)
9 sec 1.0 (2.8) 4.3 (9.1) 6.5 (10.8) 5.7 (14.4) 12 sec 2.4 (4.0)

Table 4: Performance of the combined i-vector speaker verification system (EER in %) on YOHO and Mandarin databases
for different durations of the test data (with λopt = 0.4). The values within brackets give the absolute improvement in EER
over the MFCC-based system.

YOHO database (equal error rate (EER) in %) Mandarin corpus
Test data
(approx.)

Same
session

1 session
later

2 sessions
later

3 sessions
later

Test data
(approx.)

EER
(%)

1.5 sec 6.4 (5.1) 17.3 (5.8) 14.1 (4.7) 16.4 (3.1) 2 sec 9.0 (3.2)
3 sec 2.1 (3.1) 11.4 (2.6) 6.0 (3.4 7.9 (0.8) 4 sec 3.2 (1.9)
6 sec 0.1 (1.3) 5.0 (2.2) 4.1 (3) 5.7 (0.8) 8 sec 1.2 (1.4)
9 sec 0.0 (1.1) 3.6 (0.7) 4.1 (2.4) 5.0 (0.7) 12 sec 1.2 (1.2)

tion of the test data reduces. Thus, PS-DCT does cap-
ture speaker-specific information that is supplemen-
tary to the information captured by MFCCs and the
performance gain of the combined system is higher
for limited durations of the test data (< 3 sec). Since
PS-DCT is directly computed on the speech signal, it
captures the voice source information in addition to
the vocal tract information, and hence is able to sup-
plement the performance of MFCCs in the speaker
verification task.

5 CONCLUSION

Based on experiments performed on different
datasets, we show that the PS-DCT, derived from the
voiced part of the speech signal, is an effective feature
for SID/SV tasks (see Tables 2, 3, and 4). The pro-
posed PS-DCT can capture the fine level differences
in the ‘time-domain waveform shape’ of a particular
voiced phone from different speakers (see Fig. 3).
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