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Abstract

For a graph G and a positive integer k, a vertex labelling f : V (G) → {1, 2, . . . , k} is
said to be k-distinguishing if no non-trivial automorphism of G preserves the sets f−1(i)
for each i ∈ {1, . . . , k}. The distinguishing chromatic number of a graph G, denoted
χD(G), is defined as the minimum k such that there is a k-distinguishing labelling of
V (G) which is also a proper coloring of the vertices of G. In this paper, we prove the
following theorem: Given k ∈ N, there exists an infinite sequence of vertex-transitive
graphs Gi = (Vi, Ei) such that

1. χD(Gi) > χ(Gi) > k,

2. |Aut(Gi)| < 2k|Vi|, where Aut(Gi) denotes the full automorphism group of Gi.

In particular, this answers a question posed by the first and second authors of this paper.
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1 Introduction
Let G be a graph. An automorphism of G is a permutation ϕ of the vertex set V (G) of G
such that, for any x, y ∈ V (G), ϕ(x), ϕ(y) are adjacent if and only x, y are adjacent. The
automorphism group of a graph G, denoted by Aut(G), is the group of all automorphisms
of G. A graph G is said to be vertex transitive if, for any u, v ∈ V (G), there exists
ϕ ∈ Aut(G) such that ϕ(u) = v.

Given a positive integer r, an r-coloring of G is a map f : V (G) → {1, 2, . . . , r} and
the sets f−1(i), for i ∈ {1, 2 . . . , r}, are the color classes of f . An automorphism ϕ ∈
Aut(G) is said to fix a color class C of f if ϕ(C) = C, where ϕ(C) = {ϕ(v) : v ∈ C}.
A coloring of G, with the property that no non-trivial automorphism of G fixes every color
class, is called a distinguishing coloring of G.

Collins and Trenk in [5] introduced the notion of the distinguishing chromatic number
of a graph G, which is defined as the minimum number of colors needed to color the ver-
tices of G so that the coloring is both proper and distinguishing. Thus, the distinguishing
chromatic number of G is the least integer r such that the vertex set can be partitioned
into sets V1, V2, . . . , Vr such that each Vi is independent in G, and for every non-trivial
ϕ ∈ Aut(G) there exists some color class Vi with ϕ(Vi) 6= Vi. The distinguishing chro-
matic number of a graph G, denoted by χD(G), has been the topic of considerable interest
recently (see, for instance, [1, 2, 3, 4]).

One of the many questions of interest regarding the distinguishing chromatic number
concerns the contrast between χD(G) and the cardinality of Aut(G). For instance, the
Kneser graphs K(n, r) have very large automorphism groups and yet, χD(K(n, r)) =
χ(K(n, r)) for n ≥ 2r + 1, and r ≥ 3 (see [2]). The converse question is compelling:
Are there infinitely many graphs Gn with ‘small’ automorphism groups and satisfying
χD(Gn) > χ(Gn)?

The question as posed above is not actually interesting for two reasons. First, for all
even n, χD(Cn) > χ(Cn) = 2 and |Aut(Cn)| = 2n, where Cn is the cycle of length n.
Second, if one stipulates that G also has arbitrarily large chromatic number, then here is a
construction for such a graph. Start with a rigid graph G with a leaf vertex x and having
large chromatic number (one can obtain this by minor modifications to a random graph, for
instance); then, blow up the leaf vertex x to a new disjoint setX whose neighbor in the new
graph G̃ is the same as the neighbor of x in G. In fact one can arrange for χD(G̃)− χ(G̃)

to be as large as one desires. Furthermore, since |Aut(G̃)| = |X|!, this provides examples
of graphs for which the automorphism groups are relatively ‘small’ in terms of the order of
the graph.

In the example above, the fact that χD(G) is larger than χ(G) is accounted for by
a ‘local’ reason, and that is what makes the problem stated above not very interesting.
However, if one further stipulates that the graph is vertex-transitive, then the same question
is highly non-trivial. In [1], the first and second authors constructed families of vertex-
transitive graphs with χD(G) > χ(G) > k and |Aut(G)| = O(|V (G)|3/2), for any given
k. In this paper, we improve upon that result:

Theorem 1.1. Given k ∈ N, there exists an infinite family of graphs Gn = (Vn, En)
satisfying:

1. χD(Gn) > χ(Gn) > k,

2. Gn is vertex transitive and |Aut(Gn)| < 2k|Vn|.
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Our family of graphs consists of Cayley graphs. To recall the definition, letA be a group
and let S be an inverse-closed subset of A, i.e., S = S−1, where S−1 := {s−1 : s ∈ S}.
The Cayley graph Cay(A,S) is the graph with vertex set A and the vertices u and v are
adjacent in Cay(A,S) if and only if uv−1 ∈ S.

We start with a brief description of the graphs of our construction. For q, an odd prime,
let Fnq denote the n-dimensional vector space over Fq . Our graphs shall be Cayley graphs
Cay(Fnq , S) for some suitable inverse-closed set S ⊂ Fnq which is obtained by taking
a union of a certain collection of lines in Fnq and then deleting the zero element of Fnq .
More precisely, let H0 := {(x1, x2, . . . , xn−1, 0) : xi ∈ Fq, 1 ≤ i ≤ n − 1} and let
0 denote the element (0, . . . , 0) ∈ Fnq . For each line (1-dimensional subspace of Fnq )
` ⊂ Fnq satisfying ` ∩ H0 = {0}, pick ` independently with probability 1/2 to form
the random set S̃. Our connection set S for the Cayley graph Cay(Fnq , S) is defined by
S := {v ∈ Fnq : v ∈ ` for some ` ∈ S̃} \ {0}. Our main theorem states that with high
probability, Gn,S := Cay(Fnq , S) satisfies the conditions of Theorem 1.1.

To show that these graphs have ‘small’ automorphism groups, we prove a stronger
version of Theorem 4.3 of [6] in this particular context, which is also a result of independent
interest.

Theorem 1.2. Let q be a prime power, let n be a positive integer with n ≥ 2 and let
G be the additive group of the n-dimensional vector space Fnq over the finite field Fq of
cardinality q, and let F∗q := Fq \ {0} be the multiplicative group of the field Fq with its
natural group action on G by scalar multiplication, and write K := Fnq o F∗q . If S is an
inverse-closed subset of G with K ≤ Aut(Cay(G,S)), then either

(i) Aut(Cay(G,S)) = K, or

(ii) there exists ϕ ∈ Aut(Cay(G,S)) \K with ϕ normalizing G.

Remark 1.3. Theorem 1.2 is valid even though the connection set S is not inverse-closed.
Since we deal with Cayley graphs the phrase inverse-closed subset is used in the statement
of the theorem.

The rest of the paper is organized as follows. We start with some preliminaries in
Section 2 and then include the proofs of Theorems 1.1 and 1.2 in the next section. We
conclude with some remarks and some open questions.

2 Preliminaries
We begin with a few definitions from finite geometry. For more details, one may see [13,
14]. By PG(n, q) we mean the Desarguesian projective space obtained from the affine
space AG(n+ 1, q).

Definition 2.1. A cone with vertex A ⊂ PG(k, q) and base B ⊂ PG(n− k− 1, q), where
PG(k, q) ∩ PG(n− k − 1, q) = ∅, is the set of points lying on the lines connecting points
of A and B.

Definition 2.2. Let V be an (n + 1)-dimensional vector space over a finite field F. A
subset S of PG(V ) is called an Fq-linear set if there exists a subset U of V that forms an
Fq-vector space, for some Fq ⊂ F, such that S = B(U), where

B(U) := {〈u〉F : u ∈ U \ {0}}
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and where 〈u〉F denotes the projective point of PG(V ), corresponding to the vector u of
U ⊂ V .

Further details about Fq-linear sets can be found in [14], for instance.
The projective space PG(n, q) can be partitioned into an affine space AG(n, q) and a

hyperplane at infinity, denoted by H∞.

Definition 2.3. Following [13], we say that a set of points U ⊂ AG(n, q) determines the
direction d ∈ H∞, if there is an affine line through d meeting U in at least two points.

We now state the main theorem of [13] which will be relevant in our setting.

Theorem 2.4. Let U ⊂ AG(n,Fq), n ≥ 3, |U | = qk. Suppose that U determines at
most q+3

2 qk−1 + qk−2 + · · · + q2 + q directions and suppose that U is an Fp-linear set
of points, where q = ph, p > 3 prime. If n − 1 ≥ (n − k)h, then U is a cone with an
(n−1−h(n−k))-dimensional vertex at H∞ and with base a Fq-linear point set U(n−k)h
of size q(n−k)(h−1), contained in some affine (n− k)h-dimensional subspace of AG(n, q).

We end this section by recalling another result that appears in [6] as Theorem 4.2.

Theorem 2.5. Let G be a permutation group on Ω with a proper self-normalizing abelian
regular subgroup. Then |Ω| is not a prime power.

3 Proofs of the Theorems
In this section we prove Theorems 1.1 and 1.2 starting with the proof of Theorem 1.2. We
believe that this result is only the tip of an iceberg: its current statement has been tailored
to the context of our setting, and uses some ideas that appear in [6, Section 3] and [9].

Proof of Theorem 1.2. We suppose that (i) does not hold, that is, K is a proper subgroup
of Aut(Cay(G,S)); we show that (ii) holds. Write Γ := Cay(G,S).

Let B be a subgroup of Aut(Γ) with K < B and with K maximal in B. Suppose that
KCB. As G is characteristic in K, we get GCB. In particular, every element ϕ in B \K
satisfies (ii).

Suppose then that K is not normal in B. Since K is maximal in B and G C K, we
have NB(G) = K. Suppose that there exists b ∈ B \ K such that L := 〈G,Gb〉 (the
smallest subgroup of B containing G and Gb) satisfies L ∩K = G. We claim that we are
now in the position to apply Theorem 2.5 (and implicitly some ideas from [9]). Indeed, as
NL(G) = NB(G)∩L = K∩L = G, L is a transitive permutation group on the vertices of
Γ with a proper regular self-normalizing abelian subgroup G. (Observe that G is a proper
subgroup of L because b /∈ NB(G) = K.) By Theorem 2.5, |G| is not a prime power,
which is a contradiction because |G| = qn. This proves that, for every b ∈ B \K, we have
〈G,Gb〉 ∩K > G.

Fix b ∈ B \K. Now, G andGb are abelian and henceG∩Gb is centralized by 〈G,Gb〉.
From the preceding paragraph, there exists k ∈ 〈G,Gb〉∩K with k /∈ G. Observe now that
K = Fnq o F∗q is a Frobenius group with kernel G = Fnq and complement F∗q . Therefore,
k acts by conjugation fixed-point-freely on G \ {0}. As k centralizes G ∩ Gb, we deduce
|G ∩Gb| = 1.

Let C :=
⋂
x∈BK

x be the core of K in B. As G∩Gb = 1 for all b ∈ B \K, K ∩Kb

has no non-identity q-elements. Therefore C ∩ G = 1. As C C B and C ≤ K, C is
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a normal subgroup of the Frobenius group K intersecting its kernel on the identity. This
yields C = 1.

Let Ω be the set of right cosets of K in B. From the paragraph above, B acts faithfully
on Ω. Moreover, as K is maximal in B, the action of B on Ω is primitive. Therefore B
is a finite primitive group with a solvable point stabilizer K. In [11], Li and Zhang have
explicitly determined such primitive groups: these are classified in [11, Theorem 1.1] and
[11, Tables I–VII]. Now, using the terminology in [11], a careful (but not very difficult)
case-by-case analysis on the tables in [11] shows that B is a primitive group of affine type,
that is, B contains an elementary abelian normal r-subgroup V , for some prime r. For
this analysis it is important to keep in mind that the stabilizer K is a Frobenius group with
kernel the elementary abelian group G ∼= Fnq and n ≥ 2.

Let |V | = rt. Now, the action of B on Ω is permutation equivalent to the natural action
of B = V o K on V , with V acting via its regular representation and with K acting by
conjugation. Observe that q 6= r, because K acts faithfully and irreducibly as a linear
group on V and hence K contains no non-identity normal r-subgroups. Observe further
that |B| = |V ||K| = rt · qn · (q − 1).

We are finally ready to reach a contradiction and to do so, we go back studying the
action of B on the vertices of Γ. Observe that B is solvable because V is solvable and so is
B/V ∼= K. We writeB0 for the stabilizer inB of the vertex 0 of Γ. AsG acts regularly on
the vertices of Γ, we obtain B = B0G and B0 ∩G = 1. In particular, |B0| = rt · (q − 1).
Observe that B0 is a Hall Π-subgroup of the solvable group B, where Π is the set of all
the prime divisors of q − 1 together with the prime r. As V is a Π-subgroup, from the
theory of Hall subgroups (see for instance [7], Theorem 3.3), V has a conjugate contained
in B0. Since V CB, we have V ≤ B0. This is clearly a contradiction because V is normal
in B, but B0 is core-free in B, being the stabilizer of a point in a transitive permutation
group.

For the next lemma, recall that

H0 := {(x1, x2, . . . , xn−1, 0) : xi ∈ Fq, 1 ≤ i ≤ n− 1}.

In what follows, Gn,S will denote the Cayley graph Cay(Fnq , S) and S = S̃ \ {0} for
some set S̃ =

⋃
`∈L `, where L is a collection of lines in Fnq with each ` ∈ L satisfying

` ∩H0 = {0}.

Lemma 3.1. If L 6= ∅, then χ(Gn,S) = q.

Proof. Observe that each line that belongs to the set S gives rise to a clique of size q in the
graph Gn,S . Therefore χ(Gn,S) ≥ q. On the other hand, for a fixed v ∈ S, the partition
(Cλ)λ∈Fq , where Cλ := {w + λv : w ∈ H0}, of the vertex set Fnq is a proper coloring
of the graph Gn,S . Indeed, for any distinct x = w1 + λv, y = w2 + λv in Cλ, we have
x− y = w1 −w2 /∈ S because w1 −w2 ∈ H0 and S ∩H0 = ∅. Therefore the sets Cλ are
independent in Gn,S for each λ ∈ Fq .

Lemma 3.2. Assume that q is prime. Let S̃ be the random set corresponding to a union
of lines ` in Fnq with ` ∩ H0 = {0} and where each ` ∈ Fnq is chosen independently with
probability 1

2 ; and let S = S̃ \ {0}. Then

P (χD(Gn,S) > q) ≥ 1− exp

(
−q

n−3

4

)
.
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Proof. First, note that E(|S|) = qn−1

2 , so taking δ = 1
q and µ = E(|S|) in the Chernoff

bound (see (2.6) on page 26 of [10]) we obtain

P
(
|S| < qn−1 − qn−2

2

)
≤ exp

(
−q

n−3

4

)
.

In particular, with probability at least 1 − exp(−qn−3/4), we have |S| > qn−1−qn−2

2 . We

may thus assume |S| > qn−1−qn−2

2 in what follows.
We claim that every color class in a proper q-coloring ofGn,S is an affine hyperplane of

Fnq . To see why, let C1, . . . , Cq be independent sets in Gn,S witnessing a proper q-coloring
of Gn,S . Fix v ∈ S and consider the line `v := {λv : λ ∈ Fq} along with its translates
`v + w := {λv + w : λ ∈ Fq}, for w ∈ H0. Each set `v + w is a clique of size q in
Gn,S , and these cliques partition the vertex set of Gn,S , so in particular each Ci contains
at most one vertex from each of these translates `v +w. Consequently, |Ci| ≤ qn−1 for all
i ∈ {1, . . . , q}. By size considerations, it follows that |Ci| = qn−1 for each i ∈ {1, . . . , q}.

Consider a color class C. Suppose C determines at least q+3
2 qn−2 + qn−3 + · · ·+ q2 +

q + 1 directions. Then if 〈C〉 denotes the set of all vertices in the affine lines intersecting
at least two points in C, we have |〈C〉| + |S| > 1 + q + · · · + qn−1, so 〈C〉 ∩ S 6= ∅.
However, this contradicts the assumption that C is an independent set in Gn,S . Therefore
C determines at most q+3

2 qn−2 + qn−3 + · · · + q2 + q directions. Since q is prime, by
Corollary 10 in [13], it follows that C is an Fq-linear set. Hence, by Theorem 2.4, the color
class C is a cone with an n−2 (projective) dimensional vertex V atH∞ and an affine point
u1 as base. In particular, the affine plane corresponding to the Fq-subspace spanned by V
passing through the affine point u1 is contained in C. Since |C| = qn−1, it follows that C
is this affine hyperplane, and this proves the claim.

To complete the proof, observe that for each λ ∈ F∗q\{1}, the mapϕλ(x) = λx, x ∈ Fnq
fixes each color class. Moreover, ϕλ fixes the set S and ϕλ(u)−ϕλ(v) = ϕλ(u−v), so ϕλ
is a non-trivial automorphism which fixes each color class. Therefore χD(Gn,S) > q.

Lemma 3.3. If n ≥ 6 and q ≥ 5 is prime, then Aut(Gn,S) ∼= Fnq o F∗q with probability at
least

1− 2−
qn−1

3 .

Proof. Since Gn,S is a Cayley graph on the additive group G = Fnq , by Theorem 1.2,
either Aut(Gn,S) = K ∼= Fnq oF∗q or there exists ϕ ∈ Aut(Gn,S) \K with ϕ normalizing

G = Fnq . We show that with probability at least 1 − 2−
qn−1

3 , there is no ϕ satisfying the
latter condition.

Suppose ϕ ∈ Aut(Gn,S) normalizes Fnq . If a = ϕ(0) and λa : Fnq → Fnq is the
right translation via a, then λ−1a ϕ is an automorphism of Gn,S normalizing Fnq and with
(λ−1a ϕ)(0) = (λ−1a )(ϕ(0)) = (λ−1a )(a) = a − a = 0. Therefore, without loss of gener-
ality, we may assume that ϕ(0) = 0. Since S is the neighbourhood of 0 in Gn,S , we get
ϕ(S) = S. Moreover, since ϕ acts as a group automorphism on Fnq , we have ϕ ∈ GLn(q).

Now, for ϕ ∈ GLn(q), let Eϕ denote the event ϕ(S) = S. Let L denote the set
of all lines ` with ` ∩ H0 = ∅. Also, let Orbϕ(`) = {`, ϕ(`), ϕ2(`), . . . , ϕk(`)} where
ϕk+1(`) = `. Then

P(Eϕ) ≤
Nϕ∏
i=1

21−|Orbϕ(`i)| = 2Nϕ−|L|,
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where Nϕ denotes the number of distinct orbits of ϕ in L. Setting G = GL(n, q) \ {λI :
λ ∈ F∗q}, we have

P

⋃
ϕ∈G

Eϕ

 ≤∑
ϕ∈G

P(Eϕ) ≤ 2−|L|
∑
ϕ∈G

2Nϕ . (3.1)

Let Fϕ := |{` ∈ L : ϕ(`) = `}| and F := maxϕ∈G Fϕ. Now Nϕ ≤ F + |L|−F
2 = F+|L|

2 .
Thus, it suffices to give a suitable upper bound for F . Towards that end, we note that, if
Fϕ = F for ϕ ∈ G, then every line ` fixed by ϕ corresponds to an eigenvector of ϕ. If
E1, E2, . . . , Ek denote the eigenspaces of ϕ for some distinct eigenvalues λ1, . . . , λk, then

Fϕ ≤
k∑
i=1

((
dim Ei

1

)
q

−
(

dim(Ei ∩H0)

1

)
q

)
≤ qn−2 + 1.

Similarly, we have |L| =
(
n
1

)
q
−
(
n−1
1

)
q

= qn−1, and so by (3.1), we have

P

⋃
ϕ∈G

Eϕ

 ≤ |G|2F−|L|
2 < qn

2

2−
qn−1−qn−2−1

2 < 2−
qn−1

3 ,

for q ≥ 5, n ≥ 6.

Computations and estimates similar to the ones presented in the proof of Lemma 3.3
have been proved useful in a variety of problems, see for instance [1, 8] and [12, Sec-
tion 6.4].

Proof of Theorem 1.1. Given k ∈ N with k ≥ 4, pick a prime number q with k < q < 2k.
For n ≥ 6, consider the random graph Gn,S of the group Fnq as constructed above. By
Lemmas 3.1, 3.2 and 3.3, with positive probability, the graph Gn,S satisfies the statements
of the lemmas, and hence satisfies the conclusions of Theorem 1.1.

4 Concluding remarks
• We observe that, for S chosen randomly as in the proof of our result, the distinguish-

ing chromatic number of Gn,S is q + 1 with high probability. Indeed, consider the
q-coloring C described in Lemma 3.1. Re-color the vertex 0 using an additional
color. Then the coloring described by the partition C ′ = C ∪ {0} is a proper, dis-
tinguishing coloring of Gn,S with q + 1 colors. In fact, C ′ is clearly proper, and to
show that it is distinguishing, consider ϕ ∈ Aut(Gn,S) = Fnq o F∗q (by Lemma 3.3)
that fixes every color class. Write ϕ(x) = λx+ b with λ ∈ F∗q , b ∈ Fnq . Since ϕ fixes
the color class containing 0, we have b = 0. Also, x and λx cannot be in same color
class unless λ = 1. Therefore ϕ is the identity automorphism.

It is interesting to determine if one can obtain families of vertex-transitive graphs
with χD(G) > χ(G) + 1, with ‘small’ automorphism groups and with χ(G) being
arbitrarily large. In fact, for k ∈ N, there is no known family of vertex-transitive
graphs for which χD(G) > χ(G) + 1 > k and |Aut(G)| = O(|V (G)|O(1)). It is
plausible that Cayley graphs over certain groups may provide the correct construc-
tions.
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• Theorem 1.1 establishes, for any fixed k, the existence of vertex-transitive graphs
Gn = (Vn, En) with χD(Gn) > χ(Gn) > k and with |Aut(Gn)| < 2k|Vn|. It
would be interesting to obtain a similar family of graphs that satisfy with χD(Gn) >
χ(Gn) > k and with |Aut(Gn)| ≤ C|Vn|, for some absolute constant C.
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