Anupama, AV and Choudhary, Harish K and Kumar, Rajeev and Kumaran, V and Sahoo, B (2019) Steady-shear response of magnetorheological fluid containing coral-shaped yttrium-iron-garnet particles. In: MATERIALS RESEARCH BULLETIN, 113 . pp. 45-50.
PDF
Mat_Res_Bul_113_45-50_2019.pdf - Published Version Restricted to Registered users only Download (907kB) | Request a copy |
Abstract
The steady-state magneto-mechanical response of a magnetorheological fluid (MRF), prepared by dispersing 40 wt % of magnetically soft, light-weight coral-network-shaped yttrium iron garnet (YIG; Y3Fe5O12) powder in silicone oil (140 cSt) is studied as a function of shear rate, under different applied magnetic fields (B). The results show that the yield strength (tau(Y)) and viscosity (eta) of the MRF increase with B, and are strongly influenced by the physical parameters of the particles such as morphology and saturation magnetization. The low density of the YIG-particles, leading to higher volume fraction for equal mass loading, results in a higher viscosity in the absence of a magnetic field, in comparison to that of conventional metallic Fe-particle-based MRFs. Due to this, there is a relatively smaller increase in tau(Y) and eta when the magnetic field is switched on. The YIG-particles-based MRF has the advantages of high chemical stability, thermo-oxidative resistance and low-cost.
Item Type: | Journal Article |
---|---|
Publication: | MATERIALS RESEARCH BULLETIN |
Publisher: | PERGAMON-ELSEVIER SCIENCE LTD |
Additional Information: | Copyright for this article belongs to PERGAMON-ELSEVIER SCIENCE LTD |
Keywords: | Magnetorheological fluid; Coral-shaped yttrium iron garnet; Solution combustion synthesis; Dynamic yield stress |
Department/Centre: | Division of Chemical Sciences > Materials Research Centre Division of Mechanical Sciences > Chemical Engineering |
Date Deposited: | 17 May 2019 06:54 |
Last Modified: | 17 May 2019 06:54 |
URI: | http://eprints.iisc.ac.in/id/eprint/62457 |
Actions (login required)
View Item |