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Invariants of the Z2 orbifolds of the Podleś two spheres

Safdar Quddus

Abstract. There are two Z2 orbifolds of the Podleś quantum two-sphere, one being the quantum
two-discDq and other the quantum two-dimensional real projective space RP 2q . In this article
we calculate the Hochschild and cyclic homology and cohomology groups of these orbifolds
and also the corresponding Chern–Connes indices.

Mathematics Subject Classification (2010). 19-xx; 17-xx.
Keywords. Podleś sphere, Chern–Connes index, homology, non-commutative spheres.

1. Introduction

In noncommutative geometry, Podleś noncommutative two-spheres [11] are noncom-
mutative low-dimensional manifolds. These are SUq.2/-homogeneous spaces. The
Podleś quantum 2-spheres are denoted by S2q;s , where

qn ¤ 1 for all n 2 N:

and s 2 Œ0; 1�. An extensive study of the Dirac operators, spectral triples and
corresponding local index formulae for the Podleś quantum 2-spheres can be found in
articles [1] and [2]. Detailed quantum isometries of the Podleś quantum 2-spheres can
be found [4]. In [7] the authors studied the quantum discDq and the two dimensional
quantum real projective space RP 2q arising from two involutive automorphisms
of S2q;1. It is worth noting that for s > 0 [15],

C
�
S2q;s

�
Š C

�
S2q;1

�
:

All automorphisms of S2q;s are known to be diagonal as described in [9].
LetA denote theC*-algebraC.S2q;s/ and�2Aut.A/. Using a free resolution forA,

Masuda, Nakagami, andWatanabe calculated the Hochschild and cyclic homology of
the Podleś quantum 2-spheres [10]. In [5] the author used this resolution to calculate
the Hochschild homologies H�.A; �A/ associated to an automorphism � of the
algebraA. These are isomorphic to the twistedHochschild homologiesHH �

� .A/ [6].



258 S. Quddus

The Hochschild homology groups Hn.A;A/ vanish for n � 2, but there exist
automorphisms � with Hn.A; �A/ ¤ 0 for n D 0; 1; 2. These automorphisms are
positive powers of the canonical modular automorphism associated with the SUq.2/-
invariant linear functional. These are not order two automorphisms and we will
not discuss them here, but it is interesting to note this phenomenon which has been
studied in detail elsewhere.

Classical orbifolds are geometric objects arising from the linear action of finite
groups on manifolds. When dealing with the algebras, orbifold are equivalently
defined as the fixed point algebra for the groups action. Since the fixed point
algebra for a discrete action on a C*-algebra is Morita equivalent to the associated
crossed product algebra, we shall deal with the crossed product algebra to compute
the Hochschild and cyclic (co)homology and K� groups. To my knowledge, the
Hochschild and periodic cyclic (co)homology of these two Z2 orbifolds of the Podleś
two spheres are not known in the literature. In this article, we compute the Hochschild
and cyclic homology and cohomology groups of the two S2q;1 Z2-orbifolds Dq
and RP 2q [7]. We also compute the Chern–Connes indices for each of these orbifolds
by pairing the even periodic cocycles with the projections. Similar calculations for
other algebras can be found in [13, 14].

2. Z2 actions on the Podleś quantum sphere

The C*-algebra of the Podleś quantum 2-sphere, A, is the closure of the �-algebra
generated by A and B satisfying the following relations:

A D A�; BA D q2AB; B�B C A2 D .1 � s2/AC s2;

BB� C q4A2 D .1 � s2/q2AC s2:

It is known that an automorphism of A acts diagonally on the generators, explicity
for � 2 Aut.A/ and � 2 C, � acts in one of the following two ways:

��.B/ D �B; ��.A/ D A; ��.B
�/ D ��1B�;

��.B/ D �B; ��.A/ D �A; ��.B
�/ D ��1B�:

For � D ��1 involution, the algebra AÌ��1 Z2 is associated to the quantum discDq ,
while for the involution � D ��1; the algebraAÌ��1Z2 corresponds to the quantum
real projective space RP 2q [7].

3. Strategy of the proof

We use the paracyclic decomposition of the crossed product algebras to decompose
the homology groups [3]. We quote a result of [3] to deduce a decomposition of the
homology group of the algebra A Ì � .
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Theorem 3.1 ([3, Proposition 4.6]). If � is finite and j�j is invertible in k, then there
is a natural isomorphism of cyclic homology and

HH�.A Ì �/ D HH�
�
H0.�; .A/

]
�

�
;

where .H0.�; .A/]�/ is the cyclic module

H0
�
�; .A/

]
�

�
.n/ D H0

�
�; kŒ��˝ .A/˝nC1

�
:

Since � is abelian, we can conclude that the group homology H0.�;A\
�/ splits

the complex into j�j disjoint parts.

H0
�
�;A

\
�

�
.n/ D H0

�
�; kŒ��˝ .A/˝nC1

�
D

M
t2�

�
.tA/

˝nC1
��

For each t 2� , the algebra tA is set-wiseAwith the twistedHochschild differential tb
acting as

tb.a0˝a1˝� � �˝an/ D b
0.a0˝a1˝� � �˝an/C.�/

n
�
.t �an/a0˝a1˝� � �˝an�1

�
on the complex tA˝.�C1/. We therefore decomposeHochschild homologyHH�.AÌ�/
as follows:

HH�.A Ì �/ D HH�
�
H0.�;A

\
�/
�
D

M
t2�

HH�
�
.tA
�/�

�
:

It suffcies to calculate HH�..tA�/�/ for each t 2 � . To calculate HH�..tA�/�/,
we recall the lemma below.
Lemma 3.2 ([12]). Let

J� WD 0
d
 � A

d
 � .A˝2/

d
 � .A˝3/

d
 � .A˝4/

d
 � .A˝5/

d
 � � � �

be a chain complex. For a given� action onA, consider the following chain complex,
with chainmapd� W .A˝n/� ! .A˝n�1/� induced from themapd WA˝n ! A˝n�1.

J �� WD 0
d�

 �� A� d�

 �� .A˝2/�
d�

 �� .A˝3/�
d�

 �� .A˝4/�
d�

 �� .A˝5/�
d�

 �� � � �

With the � action commuting with the differential d . We have the following group
equalityH�.J �� ; d�/ D H�.J�; d /� .

Hence using the above lemma we have the following decomposition of the
Hochschild homology groupH�.A Ì� Z2/:

H�.A Ì� Z2/ D H�.A;A/
�
˚H�.A; �A/

�:
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Where �A, set-wise A, is an Ae.D A˝Aop/ bi-module with the following actions:

˛ � a D .�1 � ˛/a and a � ˛ D a˛; for ˛ 2 A and a 2 �A:

Hence in order to understandH�.A Ì�Z2/ we need to understand the � invariant
subgroups of H�.A;A/ and H�.A; �A/. We recall the MNW resolution which we
describe below.

In the article [10], the authors presented a resolution of A,

� � � !MnC1 !Mn � � � !M2 !M1 !M0 ! A! 0

by free leftAe-modulesMn, with rank.M0/ D 1, rank.M1/ D 3, and rank.Mn/ D 4

for n � 2. Adapting their notations, M1 has basis feA; eB ; eB�g, with d1WM1 !

M0 D Ae given by

d1.et / D t ˝ 1 � 1˝ t
o; t D A;B;B�:

The module M2 has basis fea ^ eB ; eA ^ e�B ; #
.1/
S ; #

.1/
T g, with d2WM2 !M1 given

by

d2
�
1Ae ˝ .eA ^ eB�/

�
D
�
A˝ 1 � 1˝ q2Ao

�
˝ eB�

�
�
q2B� ˝ 1 � 1˝ B�o

�
˝ eA;

d2
�
1Ae ˝ .eA ^ eB�/

�
D
�
q2A˝ 1 � 1˝ Ao

�
˝ eB �

�
B ˝ 1 � 1˝ q2Bo

�
˝ eA;

d2
�
1Ae ˝ #

.1/
S

�
D � q�1

�
B ˝ 1˝ eB� C 1˝ B

�o
˝ eB

�
� q

�
q2
�
A˝ 1C 1˝ Ao

��
˝ eA;

d2
�
1Ae ˝ #

.1/
T

�
D � q�1

�
1˝ Bo ˝ eB� C B

�
˝ 1˝ eB

�
� q�1

�
A˝ 1C 1˝ Ao

�
˝ eA:

The maps di ; i � 3 are not needed in this article. Interested readers can refer to [10]
for a complete description.

There exists chain homotopy equivalence between the MNW and the bar
resolution of A.

M2 M1 M0 A 0

A˝4 A˝3 A˝2 A 0

d2

f2

d1

f1

d0

f0 Š

b0

h2 h1

b0 b0

h0

Let .M; d / denote theMNW resolution ofA and let .N ; b0/ be the bar resolution.
Thenwehave fMgiDMi and fN giDA˝.iC2/with the maps ff gi�0WMi!A˝.iC2/

lifting the identity map on A onto the complex between the resolutions. Similarly,
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let fhgi�0WA˝.iC2/ ! Mi be the chain homotopy equivalence map between the
resolutions. Explicitly these maps are as follows:

f0.a1 ˝ a
o
2/ D .a1; a2/; f1.et / D .1; t; 1/; for t D A;B;B�:

Themaps fi , i�2 can be found inductively satisfying the relation fi �diC1Db0 �fiC1.
Since a Poincaré–Birkhoff–Witt (PBW) basis for A consists of the monomials˚

AkBj
	
j;k�0

;
˚
AkB�.jC1/

	
j;k�0

we define h1 on the above PBW basis elements. For a; b 2 A, h0.a; b/ D a ˝ bo

and for t D B;B�, we have

h1.a; A
ntm; b/ D .a˝ bo/

˚
.tm/o.An�1/oeA C .t

m/o.An�2/oAeA C � � �

� � � C .tm/oAn�1eA C A
n.tm�1/oet C A

n.tm�2/otet C � � � C A
ntm�1et

	
:

In order to locate the Z2 invariant cocycles of H �.A; �A/, we need to use the
resolution homotopy maps

h�WN� !M�

and f�WM� ! N�:

We push a cocycles D into the bar complex and let Z2 act on it. Then, in the MNW
complex, we compare the pullback of this Z2-acted cocycle with D to check the Z2
invariance.

4. The quantum disc

Theorem 4.1 (Hochschild and cyclic homology). The Hochschild and cyclic
homology groups ofDq are as follows:

H�
�
C.Dq/; C.Dq/

�
Š

(
CN ; for � D 0; 1;
0; for � > 1;

HP�
�
C.Dq/

�
Š

(
C4; for � D 2n;
0; for � D 2nC 1:

Proof. Using the paracyclic decomposition of the quantum 2-disc algebra we have
the following:

H�
�
C.Dq/; C.Dq/

�
D H�.A;A/

��1 ˚H�.A; ��1A/
��1 :

From [5] we know that

H0.A;A/ D CŒ1�˚CŒA�˚†˚m�1CŒB
m�˚†˚m�1CŒB

�m�:
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We push each of these cyclces into the bar complex using the map f0 and let ��1 act
on them, thereafter we pull it back to the MNW complex using the map h0. We see
that:

H0.A;A/
��1 D CŒ1�˚CŒA�˚†˚m�1CŒB

2m�˚†˚m�1CŒB
�2m�:

Similar calculation reveals that

H0
�
A; ��1A

���1
D CŒ1�˚CŒA�:

Hence the homology group H0.C.Dq/; C.Dq// Š CN has countable generators
described above. Similarly we compute H1.C.Dq/; C.Dq//, in this case we use
maps h1 and f1 to locate the invariant cyclic cocycles in the groups H�.A;A/��1
andH�.A; ��1A/��1 . The groupH1.C.Dq/; C.Dq// is generated by the cycles

1˝ ��1eA; 1˝ eA;
˚
B2jC1 ˝ eB

	
j�0

and
˚
B�2jC1 ˝ eB�

	
j�0

:

Here ��1eA denotes the invariant copy of the cycle eA 2 H0.A; ��1A/. For � D id
and ��1,H�.A; �A/ D 0 8 � > 1. Therefore we conclude that

H�
�
C.Dq/; C.Dq/

�
D 0 for � > 1:

In a similar way we compute HC�.C.Dq/; C.Dq//. We observe that the cyclic
homology group [5]

HC
�
2n.A/ D CŒ1�˚CŒA� and HC

�
2nC1.A/ D 0 for � 2 f��1; idg:

Using the paracyclic decomposition for the cyclic homologyHC�.C.Dq// we have:

HC�
�
C.Dq/

�
D HC�.A;A/

��1 ˚HC�.A; ��1A/
��1 :

We now check that all the cycles of HC2n.A;A/ ˚ HC2n.A; ��1A/ are ��1
invariant.

Corollary 4.2 (Hochschild and cyclic cohomology). The Hochschild and cyclic
homology groups ofDq are as follows:

H �
�
C.Dq/; C.Dq/

0�
Š

(
CN ; for � D 0; 1
0; for � > 1;

HP �
�
C.Dq/

�
Š

(
C4; for � D 2n;
0; for � D 2nC 1:

Proof. The universal coefficient theorem gives a relation between the Hochschild
homology and the cohomology with dual algebra as the coefficient [8],

H�
�
C.Dq/; C.Dq/

�0
D H �

�
C.Dq/; C.Dq/

0�
:

Hence H �.Dq;D
0

q/ D 0 for � > 1. And similarly we conclude that for � D 0; 1;
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Hochschild cohomology groups are countably infinite in dimension. For calculating
periodic cyclic cohomology we consider the B; S; I long exact sequence for
Hochschild and cyclic cohomology

� � � ! HH 1.��1A/
��1

B
�! HC 0.��1A/

��1
S
�! HC 2.��1A/

��1

I
�! HH 2.��1A/

��1
B
�! HC 1.��1A/

��1
S
�! � � � :

Since HC �2n.A/ D kŒ1� ˚ kŒA� for � D fid; ��1g[5, Prop. 5.2], and the above
spectral sequence stabilises, we conclude that the group

HP even�C.Dq/; C.Dq/� Š C4:

This group is generated by Œ�0�, ŒfA� and Œ��1�0� and Œ��1fA�, where for �0.1/ D 1

and �0.a/ D 0 for all a 2 A, and fA is the Haar state on A.SUq.2// restricted to the
Podleś quantum sphere and is given by

fA.A
rC1/ D .1 � q4/.1 � q2rC4/�1

and for s > 0 and it vanishes on the PBW basis elements ArBs and ArB�s; [16]

fA.A
rBs/ D 0 D fA.A

rB�s/:

Similarly ��1�0 is a cyclic cocycle with ��1�0.1��1A/ D 1 and ��1�0.a/ D 0 for all
a 2 ��1A. Likewise we defined the Haar measure ��1fA on the PBW basis elements
of ��1A.

5. The quantum real projective space

Theorem 5.1 (Hochschild and cyclic homology). The Hochschild and cyclic homol-
ogy groups of RP 2q are as follows:

H�
�
C.RP 2q /; C.RP

2
q /
�
Š

(
CN ; for � D 0; 1;
0; for � > 1;

HC�
�
C.RP 2q /; C.RP

2
q /
�
Š

(
C2; for � D 2n;
0; for � D 2nC 1:

Proof. Similar to the quantum disc case, we have the following decomposition:

H�
�
C.RP 2q /

�
D H�.A;A/

��1 ˚H�.A; ��1A/
��1 :

Since from [5] we know that

H0.A;A/ D CŒ1�˚CŒA�˚†˚m�1CŒB
m�˚†˚m�1CŒB

�m�:
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We observe that:

H0.A;A/
��1 D CŒ1�˚†˚m�1CŒB

2m�˚†˚m�1CŒB
�2m�:

Similarly we conclude
H0
�
A; ��1A

���1
D CŒ1�:

Hence we have
H0
�
C.RP 2q /; C.RP

2
q /
�
Š CN :

For the first homology H1.C.RP 2q /; C.RP 2q //, the group H1.A; ��1A/ vanishes
hence it is a countably infinite dimensional group generated by the elements

1˝ eA;
˚
B2jC1 ˝ eB

	
j�0

and
˚
B�2jC1 ˝ eB�

	
j�0

:

Higher Hochschild homology groupsHH �
� .��1A/ for .� > 1/ vanishes [5], thereby

we conclude that:

H�
�
C.RP 2q /; C.RP

2
q /
�
D 0 for � > 1:

To compute HC�.C.RP 2q /; C.RP 2q //, we observe that the cyclic homology
groupHC��1� .A/ D 0 for all � > 0 [5], therefore

HC�
�
C.RP 2q /

�
D HC�.A;A/

��1 :

It can easily be checked that both the cycles ofHC2n.A;A/ are ��1 invariant.

Corollary 5.2 (Hochschild and cyclic cohomology). The Hochschild and cyclic
homology groups of RP 2q are as follows:

H �
�
C.RP 2q /; C.RP

2
q /
�
Š

(
CN ; for � D 0; 1;
0; for � > 1;

HP �
�
C.RP 2q /

�
Š

(
C; for � D 2n;
0; for � D 2nC 1:

Proof. As in the case of quantum 2-disc, we conclude that for � D 0; 1 theHochschild
cohomology groups are countably infinite in dimension and vanishes for � > 1. The
periodic cyclic cohomology group

HP even�C.RP 2q /; C.RP 2q /� Š C

and is generated by CŒ1�. This is so because H�.A; ��1/ D 0 for � > 0 and of the
two cocycles ofHP even.A/, only the one dimensional subspace spanned by Œ1� is ��1
invariant.
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6. Chern–Connes indices

Chern–Connes indices are useful invariants in noncommutative geometry. Explicitly,
for a C*-algebra B over C we have the following map [8, Section 8]:

ch0;nWK0.B/! HC2n.B/:

defined by
Œe� 7! tr.c.e//;

whereK0.B/ is theGrothendieck group of the ringB. Using thismap the projections
of B can be paired with the periodic even cyclic cocycles in the following way.

K0.B/ �HC
2n.B/

ch� id
����! HC2n.B/ �HC

2n.B/! C:

In this section we calculate the above pairing for the quantum disc Dq and
the quantum real projective space RP 2q . The vanishing of the second Hochschild
homology leaves the two orbifolds with fewer periodic cocycles than expected. While
the algebra C.Dq/ is a Toeplitz algebra and hence K0.C.Dq// Š Z [18, p. 191]. It
is generated by the projection Œ1Dq �. For the noncommutative quantum 2-disc Dq
we have the following Chern–Connes index table:

S�0 SfA S��1�0 S��1fA

Œ1Dq � 1 0 0 0

Similarly we have a description of the group K0.RP 2q / Š Z ˚ Z2 [7] generated
by Œ1� and ŒP �. The following is the Chern–Connes index table for RP 2q :

S�0

Œ1RP 2q
� 1

ŒP � 0

7. Conclusion

We see that the quantum parameter q does not appear in the Chern–Connes indices of
both theZ2 orbifolds. This can be attributed to the vanishing of the second homology
of the Podleś quantum 2-spheres. While the Chern–Connes indices for the Podleś
quantum 2-spheres was computed by twisting the Hochschild cohomology, this way
the “dimension drop” was avoided resulting in a rich invariant set [17]. Here we can
not use these twisted quantum 2-sphere invariants as none of the twists are involutive
and hence does not appear in the paracyclic decomposition. Whence the vanishing
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of several projection of the Podleś quantum 2-spheres after Z2 action leaves few
projections on the quotient space.

It is worth noticing that the Chern–Connes index for the noncommutative torus
orbifolds had several projections. This can be related to that fact that there is
no “dimension drop” in the periodic cyclic cohomology. Though Hochschild
cohomology does depend on the parameter � , but the periodic cyclic cohomolgy
is � invariant [19]. In other words, we can safely say that the noncommutative torus
is an ideal noncommutative manifold and the dimension drop for the Podleś quantum
sphere indicates that we need to look for other invariants which may characterise the
properties of spaces like Podleś quantum 2-spheres, e.g. the quantum SL.2/ [6].
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