Sain, D and Paul, K and Mal, A and Ray, A (2019) A complete characterization of smoothness in the space of bounded linear operators. In: Linear and Multilinear Algebra .
![]() |
PDF
lin_and_mul_alg_sain_2019.pdf - Published Version Restricted to Registered users only Download (1MB) |
Abstract
We completely characterize smoothness of bounded linear operators between infinite dimensional real normed linear spaces, probably for the very first time, by applying the concepts of Birkhoff-James orthogonality and semi-inner-products in normed linear spaces. In this context, the key aspect of our study is to consider norming sequences for a bounded linear operator, instead of norm attaining elements. We also obtain a complete characterization of smoothness of bounded linear operators between real normed linear spaces, when the corresponding norm attainment set non-empty. This illustrates the importance of the norm attainment set in the study of smoothness of bounded linear operators. Finally, we prove that Gâteaux differentiability and Fréchet differentiability are equivalent for compact operators in the space of bounded linear operators between a reflexive Kadets-Klee Banach space and a Fréchet differentiable normed linear space, endowed with the usual operator norm. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
Item Type: | Journal Article |
---|---|
Publication: | Linear and Multilinear Algebra |
Publisher: | Taylor and Francis Ltd. |
Additional Information: | Copyright for this article belongs to Taylor & Francis |
Keywords: | Smoothness;bounded linear operators;Birkhoff-James orthogonality;semi-inner-product |
Department/Centre: | Division of Physical & Mathematical Sciences > Mathematics |
Date Deposited: | 15 Apr 2019 12:04 |
Last Modified: | 15 Apr 2019 12:11 |
URI: | http://eprints.iisc.ac.in/id/eprint/62099 |
Actions (login required)
![]() |
View Item |