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a b s t r a c t

We consider the problem of designing a revenue-optimal mechanism in the two-item, single-buyer, unit-
demand setting when the buyer’s valuations, (z1, z2), are uniformly distributed in an arbitrary rectangle
[c, c +b1]× [c, c +b2] in the positive quadrant. We provide a complete and explicit solution for arbitrary
nonnegative values of (c, b1, b2). We identify five simple structures, each with at most five (possibly
stochastic) menu items, and prove that the optimal mechanism has one of the five structures. We also
characterize the optimal mechanism as a function of b1, b2, and c. When c is low, the optimal mechanism
is a posted price mechanism with an exclusion region; when c is high, it is a posted price mechanism
without an exclusion region. Our results are the first to show the existence of optimal mechanisms with
no exclusion region, to the best of our knowledge.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

This paper studies the design of revenue-optimalmechanism in
the two-item, one-buyer, unit-demand setting. The solution to the
problem is well knownwhen the buyer’s value is one-dimensional
(Myerson, 1981). The problem however becomes much harder
when the buyer’s value is multi-dimensional. Thoughmany partial
results are available in the literature, finding the general solution
remains open in the two-item setting, be it with or without the
unit-demand constraint.

In this paper, we consider the problem of optimal mechanism
design in the two-item one-buyer unit-demand setting, when the
valuations of the buyer are uniformly distributed in arbitrary rect-
angles in the positive quadrant having their left-bottom corners on
the line z1 = z2. Observe that this is a setting that occurs often in
practice. As one example, consider a setting where two houses in a
locality are sold. The seller is aware of a minimum and amaximum
value for each house. Further, the buyer has a unit-demand, i.e., he
can buy at most one of the houses, but submits his bids for both
the houses. We consider that the buyer’s valuations are uniform in
the rectangle formed by those intervals. We compute the optimal
mechanism for all cases when the minimum value for both the
houses is the same. Another example is onewhere two sports team
franchises in a sports league are sold to a potential buyer. The
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buyer needs at most one franchise, but submits his bids for both
franchises.

1.1. Prior work

Consider the setting where the buyer is not restricted by the
unit-demand constraint. Daskalakis et al. (2013, 2014, 2015) pro-
vided a solution when the buyer’s valuation vector z arises from
a rich class of distribution functions each of which gives rise to
a so-called ‘‘well-formed canonical partition’’ of the support set
of the distribution. The authors of these papers formulate this
problem as an optimization problem, identify its dual as a problem
of optimal transport, and exploit its solution to obtain a primal
solution. Giannakopoulos and Koutsoupias (2014) computed the
solution for the multi-item setting, but only when the valuations
for each item are uniformly distributed in [0, 1]. Giannakopoulos
and Koutsoupias (2015) also provided closed form solutions in the
two-item setting, when the distribution satisfies some sufficient
conditions, by using a dual approach similar to Daskalakis et al.
(2013, 2015, 2017). In a companion paper (Thirumulanathan et al.,
2017) (see also Thirumulanathan et al., 2016), we used the same
approach of solving the optimal transport problem as in Daskalakis
et al. (2015) to obtain the solution when z ∼ Unif[c1, c1 + b1] ×

[c2, c2 + b2] for arbitrary nonnegative values of (c1, c2, b1, b2).
The exact solution in the unrestricted setting has largely been
computed using the dual approach designed in Daskalakis et al.
(2015).
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The exact solution in the unit-demand setting, on the other
hand, has been computed using various other methods. Pavlov
(2011) obtained a solution both in the unrestricted setting and
in the restricted setting of unit-demand constraint, when z ∼

Unif[c, c + 1]2. The above paper used a marginal profit function V ,
whose properties are analogous to the virtual valuation function
in Myerson (1981), to compute the exact solution. We thus call
this method the virtual valuation method. The function however
depends on the region of zero allocation, the exclusion region,
and is thus not as straightforward to compute as the virtual val-
uation function in Myerson (1981) for the single item case. Lev
(2011) provided a solution for the unit-demand setting when the
distribution is uniform in certain polygons aligned with the co-
ordinate axes; the approach involves analyzing the utility function
of the optimal mechanism at the edges of the polygon. Kash and
Frongillo (2016) identified the dual when the valuation space is
convex and the space of allocations is restricted. They also solved
examples when the allocations are restricted to satisfy either the
unit-demand constraint or the deterministic constraint. Other than
this lone example solved in Kash and Frongillo (2016), we are not
aware of any work that computes the exact solution in the unit-
demand setting using the duality approach.

There are interesting characterization results on optimal mech-
anisms in the unit-demand setting. Wang and Tang (2014) and
Tang and Wang (2017) proved that when the distributions are
uniform in any rectangle in the positive quadrant, the optimal
mechanism is a menu with at most five items. However, the exact
menus and associated allocations were left open. Haghpanah and
Hartline (2015) did a reverse mechanism design; they constructed
a mechanism and identified conditions under which there exists
a virtual valuation thereby establishing that the mechanism is
optimal.

There has been some interest in finding approximately optimal
solutions when the distribution of the buyer’s valuations satisfies
certain conditions. See Bhattacharya et al. (2010), Briest et al.
(2010, 2015), Cai and Daskalakis (2011, 2015), Cai et al. (2012a,b,
2013, 2016), Cai and Zhao (2016), Chawla et al. (2007, 2015),
Chawla and Miller (2016), Daskalakis and Weinberg (2011, 2012)
and Yao (2014) for relevant literature on approximate solutions. In
this paper however we shall focus on exact solutions.

1.2. Our contributions

Our contributions are as follows:

(i) We identify the dual to the problem of optimal auction in
the restricted unit-demand setting, using a result in Kash
and Frongillo (2016).1 We then argue that the computation
of the dual measure in the unit-demand setting using the
approach of optimal transport in Daskalakis et al. (2015)
is intricate. Specifically, we consider three examples, z ∼

Unif[1.26, 2.26]2, z ∼ Unif[1.5, 2.5]2, and z ∼ Unif[0, 1] ×

[0, 1.2], and show that the optimal dual variable differs sig-
nificantlywith variation in c , thusmaking it hard to discover
the correct dual measure.

(ii) Motivated by the above, we explore the virtual valuation
method in Pavlov (2011) andnontrivially extend thismethod
to compute the exact solution when z ∼ Unif[c, c + b1] ×

[c, c+b2], for arbitrary nonnegative values of (c, b1, b2). We
establish that the structure of the optimal mechanism falls
within a class of five simple structures, each having at most
five constant allocation regions.Wealsomake some remarks
on the general case [c1, c1 + b1] × [c2, c2 + b2].

1 The dual to the problem of optimal auction was derived independently in the
PhD thesis of the first author.

Fig. 1. A phase diagram of the optimal mechanism when b2 ≤ b1 ≤ (2.2)b2 .

(iii) To the best of our knowledge, our results appear to be the
first to show the existence of optimal mechanisms with no
region of exclusion (see Figs. 2e and 2g). The results in Arm-
strong (1996) and Barelli et al. (2014) assert that the optimal
multi-dimensional mechanisms have a nontrivial exclusion
region under some sufficient conditions on the distributions
and the utility functions. Armstrong (1996) assumes strict
convexity of the support set, and Barelli et al. (2014) assume
strict concavity of the utility function in the allocations.
Neither of these assumptions holds in our setting.

In the literature, we already have qualitative results on the
structure of optimalmechanism for distributions satisfying certain
conditions. For instance, Pavlov (2010) considered distributions
with negative power rate, whileWang and Tang (2014) considered
uniform distributions on arbitrary rectangles (which do have neg-
ative power rate). Our work considers uniform distributions with
support set [c, c + b1] × [c, c + b2], a special case of the settings
in Pavlov (2010) and Wang and Tang (2014). It follows that the
optimal mechanisms in our setting can have allocations only of the
form (0, 0), (a, 1 − a) in accordance with Pavlov’s result, and the
menus can have at most five items in accordance with Wang and
Tang’s result.

Though our work is on a further special case, we are able to
obtain finer results. We prove that the optimal mechanisms can
only be one among the structures depicted in Figs. 2a–2g. Our
results bring out some unexpected structures such as those in
Figs. 2e and 2a. Furthermore, our results are explicit in that we can
compute the optimal mechanism for uniform distributions on any
rectangle of the form [c, c + b1] × [c, c + b2].

The optimal mechanisms for various values of (c, b1, b2) are
mentioned in Theorem 12. The phase diagram in Fig. 1 represents
how the structure of optimal mechanism changes when the values
of (c, b1, b2) change. We interpret the solutions and highlight their
features as follows.

• Beyond the exclusion (no sale) region, the allocation prob-
abilities are the same for all z falling in the same 45◦ line
(Theorem 9). Observe that this is in sharp contrast with the
unrestricted setting, where the allocation probabilities are
the same either for all z falling in the same vertical line or
the same horizontal line (see Thirumulanathan et al., 2016,
Figs. 1–3). This is because, in the unit-demand case, the buyer
demands at most one of the two items, and thus the seller
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Fig. 2. An illustration of all possible structures that an optimal mechanism can have.

decides the item to be sold based on the difference of valua-
tions on the items.2

• Consider the case when c is low. The seller then knows that
the buyer possibly could have very low valuations, and thus
sets a high price (c + δi) to sell item i. Observe that this is a
posted pricemechanismwith prices c+δ1 and c+δ2 for items
1 and 2 respectively (see Fig. 2a).

• When c increases, the seller now finds it optimal to set a
second price over and above the first price c + δi. He offers
a lottery for the first price, and offers an individual item for
the second and higher price (see Figs. 2b and 2c).

• When c increases further, the seller sells item i only when
zi is very high compared to z−i. In case the difference is not
sufficiently high, then the seller finds it optimal to allocate
randomly one or the other item (see Figs. 2d and 2f).

• When c is very high, the revenue gained by exclusion of
certain valuations is always dominated by the revenue lost by
it, and thus the seller finds no reason towithhold the items for
any valuation profile.3 So the optimalmechanism turns out to
be a posted pricemechanismwith prices c+

b1
3 +max(0, b1

6 −
b2
4 ) and c for items 1 and 2 respectively. In effect, it is a posted
price mechanism with no exclusion region (see Figs. 2e and
2g).

• Starting at c = 0, consider moving the support set rectangle
to infinity. Then, the optimal mechanism starts as a posted

2 The item to be sold is decided based on the difference in valuations only for
cases where q1 + q2 = 1 holds everywhere outside the exclusion region. It would
be interesting to interpret the results for cases when q1 + q2 < 1 can occur outside
the exclusion region, but this exploration is beyond the scope of this paper.
3 We refer the reader to Remark 7 for a more precise explanation.

pricemechanismwith an exclusion region, and ends up again
as a posted pricemechanismbutwithout an exclusion region.
The other structures in Figs. 2b–2d, and Fig. 2f are optimal for
various intermediate values.

1.3. Our method

Our method is as follows. We initially formulate the problem at
hand (in the unit-demand setting) into an optimization problem,
and compute its dual using a result in Kash and Frongillo (2016).
The dual problem turns out to be an optimal transport problem
that transfers mass from the support set D to itself. Mass transfer
must occur subject to the constraint that the difference between
the mass densities transferred out of and transferred into the set
convex-dominates a signed measure that depends only on the
distribution of the valuations. The dual problem is similar to that
in Daskalakis et al. (2015) for the unrestricted setting, but differs
in the transportation cost.

The key challenge in solving the dual problem lies in con-
structing the ‘‘shuffling measure’’ that convex-dominates 0, and
in finding the location in the support set D where the shuffling
measure sits. The shuffling measure was always added at fixed
locations in the unrestricted setting, and had a fixed structure for
the uniform distribution of valuations over any rectangle in the
positive quadrant (see Thirumulanathan et al., 2016). In the unit-
demand setting, however, we see that both the locations and the
structures of the shuffling measure vary significantly for different
values of c. There is as yet no clear understanding on how to
construct the shufflingmeasure, and hence on how to compute the
optimal solution via the dual method.
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Motivated by the above, we explore the virtual valuation
method used by Pavlov (2011). Pavlov (2011) computed the op-
timal mechanism when the buyer’s valuations are given by z ∼

Unif[c, c + 1]2; the optimal mechanism was obtained only for
distributions that are symmetric across the two items. When com-
pared with the case of symmetric distributions, the case of asym-
metric distributions poses the following challenge. The optimal
mechanism is symmetric along a diagonal in the case of symmetric
distributions. For asymmetric distributions, the mechanism must
be computed over the larger region of the entire support set. The
asymmetry leads tomore parameters,more conditions to check for
optimality, and amore complex variety of solutions determined, as
wewill soon see, by a larger number of polynomials. All thesemake
the computation more difficult.

In this paper, we demonstrate how to compute the optimal
mechanism for asymmetric distributions, when z ∼ Unif[c, c +

b1] × [c, c + b2]. Specifically, we do the following.

• Taking cue from the result in Wang and Tang (2014) that the
optimalmechanism is amenuwith atmost five items,we first
construct some possiblemenus, parametrized by atmost four
parameters.

• We find the relation between the parameters using the suffi-
cient conditions on the marginal profit function V . We show
that the parameters can be computed by simultaneously solv-
ing at most two polynomials, each of degree at most 4.

• We then use continuity of the polynomials to prove that there
exists a solution having desired values for all parameters.
We then prove that the optimal mechanism has one of the
five simple structures for arbitrary nonnegative values of
(c, b1, b2) (see Theorem 12).

• We conjecture that the optimal mechanisms have a similar
structure even when z ∈ [c1, c1 + b1] × [c2, c2 + b2] for all
(c1, c2, b1, b2) ≥ 0. We provide preliminary results to justify
the conjecture (see Theorem 17).

Proofs of some case use Mathematica to verify certain algebraic
inequalities. This is because (i) the parameters turn out to be
solutions that simultaneously satisfy two polynomials of degree
at most 4; and (ii) the solutions are complicated functions of
(c, b1, b2) involving fifth roots and eighth roots of some expres-
sions. Verifying that these expressions satisfy some bounds were
automated via the Mathematica software. The results that use
Mathematica have been marked with an asterisk in the statement
of Theorem 12. We believe that all of these results can be proved
in the strict mathematical sense; but we leave this for the future
in the interest of timely dissemination of our conclusions and
observations. The skeptical reader could proceed by interpreting
the Mathematica-based conclusions as conjectures.

Our work thus provides insights into two well-known ap-
proaches to solve representative problems on optimalmechanisms
in the multi-item setting, besides solving, in the process, one
such problem for asymmetric distributions. Specifically, our work
clarifies under what situations the duality approach is likely to
work well, and the intrinsic difficulties in using that approach in
some other settings. Furthermore, the special cases that we solve
provide insights into various possible structures of the optimal
mechanisms which, we feel, would act as a guideline to solve the
problemof computing goodmenus in practical settings.Webelieve
that our work is an important step towards understanding the
applicability of the two different approaches, and a useful step
addition to the growing canvas of canonical problems in multi-
dimensional optimal auctions.

The rest of the paper is organized as follows. In Section 2, we
first formulate an optimization problem under the unit-demand
setting. We next compute its dual using a result in Kash and
Frongillo (2016), and solve it for three representative examples of

(c, b1, b2). Themain purpose behind these examples is to bring out
the variety in structure, and therefore the difficulty in guessing
and computing, the dual measure for more general settings. In
Section 3, we nontrivially extend the virtual valuation method
of Pavlov (2011) to provide a complete and explicit solution for
the case of asymmetric distributions. In particular, we prove that
the optimal mechanism has one of the five simple structures.
In Section 4, we conjecture, with promising preliminary results,
that the optimal mechanism when the valuations are uniformly
distributed in an arbitrary rectangle [c1, c1 + b1] × [c2, c2 + b2]
also has similar structures. In Section 5, we conclude the paper and
provide some directions for future work.

2. Exploring the dual approach

Consider a two-item, single-buyer, unit-demand setting. The
buyer’s valuation is z = (z1, z2) for the two items, sampled
according to the joint density f (z) = f1(z1)f2(z2), where f1(z1)
and f2(z2) are marginal densities. The support set of f is defined
as D := {z : f (z) > 0}. Throughout the paper, we consider
D = [c, c + b1] × [c, c + b2], where (c, b1, b2) are nonnegative.

Our aim is to design a revenue-optimal mechanism. By the
revelation principle (Nisan et al., 2007, Prop. 9.25), it suffices to
focus only ondirectmechanisms. Further,we focus onmechanisms
where the buyer has a quasilinear utility. Specifically, we assume
an allocation function q : D → {(q1, q2) : 0 ≤ q1, q2, q1 + q2 ≤ 1}
and a payment function t : D → R+ that represent, respectively,
the probabilities of allocation of the items to the buyer and the
amount of transfer from the buyer to the seller. If the buyer’s true
valuation is z, and he reports ẑ, his realized (quasilinear) utility is
û(z, ẑ) := z · q(ẑ) − t(ẑ), which is the expected value of the lottery
he receives minus the payment.

A mechanism (q, t) satisfies incentive compatibility (IC) when
truth telling is aweakly dominant strategy for the buyer, i.e., û(z, z)
≥ û(z, ẑ) for every z, ẑ ∈ D. In this case the buyer’s realized utility
is u(z) := û(z, z) = z · q(z) − t(z). An incentive compatible
mechanism satisfies individual rationality (IR) if the buyer is not
worse off by participating in the mechanism, i.e., u(z) ≥ 0 for
every z ∈ D, with zero being the buyer’s utility if he chooses not to
participate.

The following result is well known:

Theorem 1 (Rochet, 1987). Amechanism (q, t), with u(z) = z ·q(z)−
t(z), is incentive compatible if and only if u is continuous, convex and
∇u(z) = q(z) for a.e. z ∈ D.

An optimal mechanism is one that maximizes the expected
revenue to the seller subject to incentive compatibility and indi-
vidual rationality (Krishna, 2009, p. 67). By virtue of Theorem 1, an
optimal mechanism solves the problem

max
u

∫
D
(z · ∇u(z) − u(z))f (z) dz

subject to (a) u continuous, convex,

(b)∇u(z) ∈ [0, 1]2, ∇u(z) · 1 ∈ [0, 1], a.e. z ∈ D,

(c) u(z) ≥ 0, ∀z ∈ D.

Using the arguments in Daskalakis et al. (2017, Sec. 2.1), we sim-
plify the aforementioned problem as

max
u

∫
D
(z · ∇u(z) − (u(z) − u(c, c)))f (z) dz (1)

subject to (a) u continuous, convex,

(b)∇u(z) ∈ [0, 1]2, ∇u(z) · 1 ∈ [0, 1], a.e. z ∈ D.

We now further simplify the objective function of the problem.
Using integration by parts, the objective function can be written
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as
∫
D u(z)µ(z) dz +

∫
∂D u(z)µs(z) dz + u(c, c)µp(c, c), where the

functions µ, µs, and µp are defined as

µ(z) := −z · ∇f (z) − 3f (z), z ∈ D,

µs(z) := (z · n(z))f (z), z ∈ ∂D, (2)
µp(z) := δ{(c,c)}(z).

The vector n(z) is the normal to the surface ∂D at z if it is defined,
and 0 otherwise (at corners). We regard µ as the density of a
signed measure on the support set D that is absolutely continuous
with respect to (w.r.t.) the two-dimensional Lebesgue measure,
and µs as the density of a signed measure on ∂D that is absolutely
continuous w.r.t. the surface Lebesgue measure. We shall refer to
both Lebesgue measures as dz. We regard µp as a point measure of
unit mass at the specified point. The notation δ denotes the Dirac-
delta function. Soµp(z) = 1 if z = (c, c), and 0 otherwise. By taking
u(z) = 1 ∀z ∈ D, we observe that∫

D
µ(z) dz +

∫
∂D

µs(z) dz + µp(c, c)

=

∫
D
u(z)µ(z) dz +

∫
∂D

u(z)µs(z) dz + u(c, c)µp(c, c)

=

∫
D
(z · ∇u(z) − u(z))f (z) dz + u(c, c)

=

∫
D
(0 − 1)f (z) dz + u(c, c) = 0. (3)

We now define the measure µ̄, supported on set D, as

µ̄(A) :=

∫
D
1A(z)µ(z) dz +

∫
∂D

1A(z)µs(z) dz + µp(A ∩ (c, c))

for all measurable sets A. We thus observe that µ̄(D) = 0. Observe
that µ̄ is a signed Radon measure in D, and that the functions µ
and µs are just the Radon–Nikodym derivatives of the respective
components of µ̄ w.r.t. the two-dimensional and one-dimensional
Lebesgue measures respectively. Based on the discussion in the
paragraph after (1), the objective function of problem (1) can now
be written as

∫
D u dµ̄.

We now rewrite the constraint (b) in problem (1) as the follow-
ing three constraints.

u(z1, z2) − u(z ′

1, z2) ≤ (z1 − z ′

1)+, ∀z1, z ′

1 ∈ D1, ∀z2 ∈ D2,

u(z1, z2) − u(z1, z ′

2) ≤ (z2 − z ′

2)+, ∀z1 ∈ D1, ∀z2, z ′

2 ∈ D2,

u(z1, z2) − u(z ′

1, z2 − z1 + z ′

1) ≤ (z1 − z ′

1)+,

∀z1, z ′

1 ∈ D1, ∀z2 ∈ D2,

where (·)+ = max(0, ·). Observe that these three constraints are
equivalent to

u(z) − u(z ′) ≤ max((z1 − z ′

1)+, (z2 − z ′

2)+), ∀z, z ′
∈ D.

So the optimization problem can now be written as

max
u

∫
D
u dµ̄ (4)

subject to (a) u continuous, convex, increasing,
(b) u(z) − u(z ′) ≤ ∥z − z ′

∥∞, ∀z, z ′
∈ D.

Note that the objective function of the problem satisfies
∫
D t(z)f (z)

dz =
∫
D u dµ̄; thus the µ̄-measure can be interpreted as the

marginal contribution of the utility u to the revenue of the seller.
We now recall the definition of the convex ordering relation. A

function f is increasing if z ≥ z ′ component-wise implies f (z) ≥

f (z ′).

Definition 2 (See for e.g., Daskalakis et al., 2014). Let α and β be
measures defined on a set D. We say α convex-dominates β (α ⪰cvx
β) if

∫
D f dα ≥

∫
D f dβ for all continuous, convex and increasing f .

One can understand convex dominance as follows: A risk-
seeking buyer,4 with u as his utility function (increasing and con-
vex), will choose the lottery α over β if α convex-dominates β .

The dual problem of (4) is found to be (Kash and Frongillo, 2016,
Thm. 3.1).

min
γ

∫
D×D

∥z − z ′
∥∞ dγ (z, z ′) (5)

subject to (a) γ ∈ Radon+(D × D),
(b) γ (·,D) = γ1, γ (D, ·) = γ2, γ1 − γ2 ⪰cvx µ̄.

By γ ∈ Radon+(D × D), we mean that γ is an unsigned Radon
measure in D×D. The dual is computed by using the following ex-
pressions in the statement of Kash and Frongillo (2016, Thm. 3.1):
(i) lS(z, z ′) = ∥z − z ′

∥∞, and (ii) U(D, S) is the set of all utility
functions that are continuous, convex, and increasing. We derive
the weak duality result in Appendix C to provide an understanding
of how the dual arises and why γ may be interpreted as prices for
violating the primal constraint.

The next lemma gives a sufficient condition for strong duality.

Lemma 3 (Kash and Frongillo, 2016, Cor. 4.1). Let u∗ and γ ∗ be
feasible for the aforementioned primal (4) and dual (5) problems,
respectively. Then the objective functions of (4) and (5) with u = u∗

and γ = γ ∗ are equal if and only if (i)
∫
D u∗ d(γ ∗

1 − γ ∗

2 ) =
∫
D u∗ dµ̄,

and (ii) u∗(z) − u∗(z ′) = ∥z − z ′
∥∞, hold γ ∗

−a.e.

We now present a few examples to indicate why it is hard to
compute the optimalmechanismusing this dual approach.We first
compute the components of µ̄ (i.e., µ, µs, µp), with f (z) =

1
b1b2

for
z ∈ D = [c, c + b1] × [c, c + b2], from (2), as

(area density) µ(z) = −3/(b1b2), z ∈ D,

(line density) µs(z) =

2∑
i=1

(−c1(zi = c) + (c + bi)

1(zi = c + bi))/(b1b2),
z ∈ ∂D,

(point measure)µp(z) = δ{(c,c)}(z). (6)

In the examples that we consider, we start by suggesting a
certain mechanism, and prove that it is indeed the optimal mech-
anism by constructing a feasible u and a feasible γ that satisfy the
complementary slackness constraints of Lemma 3. While u can be
constructed easily from the allocations q, the construction of the
transport variable γ needs some work. This involves transporting
mass from each point on the top and right boundaries of D along
the 45◦ line containing the point. We shuffle the measure across
the points on the boundary in case there is an excess or a deficit.
The construction of the shuffling measure is the main challenge; it
differs significantly across the examples we consider. We now fill
in the details.

2.1. Example 1: z ∼ Unif [1.26, 2.26]2

Theorem 4 (Pavlov, 2011). Consider the case when c = 1.26, and
b1 = b2 = 1. Then, the optimal mechanism is as depicted in Fig. 3a,
with δ1 = δ2 = 20/63 and a1 = a2 = a = 0.6615.

4 This is to be contrasted with second-order stochastic dominance which says
that α second-order dominates β (denoted as α ⪰2 β) if a risk-averse buyer with
an increasing and concave utility function prefers α to β . Mathematically, convex
dominance and second-order stochastic dominance are related inversely under
some conditions. More specifically, α ⪰cvx β ⇔ α ⪯2 β if (i) D is a bounded
rectangle in the positive orthant and (ii)

∫
D ∥x∥1 d(α − β) = 0 (Daskalakis et al.,

2014, Lem. 8).
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Fig. 3. Optimal mechanism when b1 = b2 = 1 and (a) c = 1.26, (b) c = 1.5.

Fig. 4. (a) The measure α(1) . (b) The measure β (1) .

Proof. Pavlov (2011) proved this via virtual valuations. We shall
use the dualmethod. To prove this theorem,wemust find a feasible
u and a feasible γ , and show that they satisfy the conditions of
Lemma 3. We define the allocation q as given in Fig. 3a. The primal
variable u can be derived by fixing u(c, c) = 0 and by using the
allocation variable q, since ∇u = q.

We now define functions α(1), β (1)
: D → R as follows (see

Figs. 4a and 4b).

α(1)(c + t, c + t ′) : =

{
3t − 1 (t, t ′) ∈ [0, 2/3] × {1},
0 otherwise.

(7)

β (1)(c + t, c + t ′) : =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3t − 1 (t, t ′) ∈ [2/3, 1 − δ2] × {1},
3t + 3a
(1 − t − δ2)
−c − 1 (t, t ′) ∈ [1 − δ2, 1] × {1},
0 otherwise.

(8)

The functions α(2) and β (2) are defined similarly on the intervals
({c+1}×[c, c+2/3]) and ({c+1}×[c+2/3, c+1]) respectively.
Observe that α(i) and β (i) are densities (Radon–Nikodym deriva-
tives) of measures that are absolutely continuous w.r.t. the surface
Lebesgue measure. The measures themselves are denoted ᾱ(i) and
β̄ (i), respectively.

We now construct the dual variable γ as follows. First, let (i)
γ1 := γ Z

1 + γ
D\Z
1 , where Z is the exclusion region; (ii) γ Z

1 = µ̄Z , the
µ̄measure restricted to Z; and (iii) γ D\Z

1 = (µ̄D\Z
+
∑

i(ᾱ
(i)

+β̄ (i)))+.
So γ1 is supported on Z ∪ ([1.26, 2.26] × {2.26}) ∪ ({2.26} ×

[1.26, 2.26]). We define γ s
1 as the Radon–Nikodym derivative of γ1

w.r.t. the surface Lebesgue measure. It is easy to see that γ s
1 (z) =

µs(z) +
∑

i(α
(i)(z) + β (i)(z)) when z ∈ (Z ∩ D) ∪ ([1.26, 2.26] ×

{2.26}) ∪ ({2.26} × [1.26, 2.26]), and zero otherwise. We now
specify a transition probability kernel γ (· | x) for all x in the support
of γ1.

(a) For x ∈ Z , we define γ (y | x) = δx(y). This is interpreted as
no mass being transferred.

(b) For x ∈ ([1.26, 2.26] × {2.26}) ∪ ({2.26} × [1.26, 2.26]), we
define γ (y | x) = (µ(y) + µs(y))−/γ s

1 (x) if y ∈ {y ∈ D\Z :

y1 − y2 = x1 − x2}, and zero otherwise. This is interpreted
as a transfer of γ s

1 (x) from the boundary point x to (the 45◦

line segment) {y ∈ D\Z : y1 − y2 = x1 − x2}, which has x as
one end-point.

We then define γ (F ) =
∫
(x,y)∈F γ1(dx)γ (dy | x) for any measurable

F ∈ D × D. It is now easy to check that γ Z
2 = µ̄Z , and γ

D\Z
2 =

(µ̄D\Z
+
∑

i(ᾱ
(i)

+ β̄ (i)))−. Thus we have (γ1 − γ2)Z = 0, and
(γ1 − γ2)D\Z

= µ̄D\Z
+
∑

i(ᾱ
(i)

+ β̄ (i)).
We now verify that γ is feasible. Observe that the components

of µ̄Z are positive only at the left-bottom corner of D (i.e., at (c, c))
and negative elsewhere, and that µ̄+(Z) = 1 = µ̄−(Z) (the second
equality requires some calculations). So we have

∫
Z f dµ̄ ≤ 0 for

any increasing function f , and thus µ̄Z
⪯cvx 0 = (γ1 − γ2)Z . We

next prove that (γ1 − γ2)D\Z
⪰cvx µ̄D\Z . Since (γ1 − γ2 − µ̄)D\Z

=∑
i(ᾱ

(i)
+ β̄ (i)), it suffices to prove that

∑
i(ᾱ

(i)
+ β̄ (i)) ⪰cvx 0. We

do this in the next lemma.

Lemma 5.

(i) The measure ᾱ(1) is such that ᾱ(1)([1.26, 1.26+2/3]×{2.26})
= 0 and

∫ 1.26+2/3
1.26 (t − 1.26) ᾱ(1)(dt, 2.26) ≥ 0. Hence for any

f constant on [1.26, 1.26 + 2/3], we have
∫ 1.26+2/3
1.26 f (t) dᾱ(1)
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(dt, 2.26) = 0. Further, ᾱ(1)
⪰cvx 0. A similar result holds for

ᾱ(2).
(ii) β̄ (1)([1.26 + 2/3, 2.26] × {2.26}) = 0 and

∫ 2.26
1.26+2/3(t −

1.26) β̄ (1)(dt, 2.26) = 0. Hence we have
∫ 2.26
1.26+2/3 f (t) β̄

(1)

(dt, 2.26) = 0 for any affine f on [1.26 + 2/3, 2.26]. Further,
β̄ (1)

⪰cvx 0. A similar result holds for β̄ (2).

Proof. See Appendix A. □

We have thus established that γ1 − γ2 ⪰cvx 0. We now verify if
u and γ satisfy the conditions in Lemma 3.∫
D
u d(γ1 − γ2) =

∫
Z
u d(γ1 − γ2) +

∫
D\Z

u d(γ1 − γ2)

=

∫
D\Z

u d

(
µ̄ +

∑
i

(ᾱ(i)
+ β̄ (i))

)

=

∫
D\Z

u dµ̄ =

∫
D
u dµ̄,

where the second equality holds because (γ1 − γ2)Z = 0; the third
equality holds because u(z) is a constant when z ∈ ([1.26, 1.26 +

2/3]×{2.26})∪({2.26}×[1.26, 1.26+2/3]), and u(z) is affinewhen
z ∈ ([1.26 + 2/3, 2.26] × {2.26}) ∪ ({2.26} × [1.26 + 2/3, 2.26]);
and the last equality holds because u(z) = 0 when z ∈ Z . To
see why u(z) − u(z ′) = ∥z − z ′

∥∞ holds γ -a.e., it suffices to
check this condition for those (z, z ′) for which γ (· | z) is nonzero,
as in the cases (a) and (b) above. For z, z ′ in (a), z = z ′ and
hence u(z) − u(z ′) = 0; in (b), (z, z ′) lie on a 45◦ line, and hence
u(z)−u(z ′) = (z1 −z ′

1) = (z2 −z ′

2) = ∥z−z∥∞. Thus u(z)−u(z ′) =

∥z − z ′
∥∞ holds γ -a.e. □

The dualmeasure γ was defined so that themeasure γ1−γ2−µ̄,
called the shuffling measure, convex-dominates 0. Our key chal-
lenge in computing the optimal mechanism lies in constructing
the shuffling measure. In the next example, we use a significantly
different shuffling measure.

2.2. Example 2: z ∼ Unif [1.5, 2.5]2

Theorem 6 (Pavlov, 2011). Consider the case when c = 1.5, and
b1 = b2 = 1. Then, the optimal mechanism is as depicted in
Fig. 3a, with δ′

1 = δ′

2 =
√
5/3 − 1.

We use the shuffling measure λ̄ +
∑

i(ᾱ
(i)

+ β̄ (i)), defined as
follows. We define α(i) and β (i), the respective Radon–Nikodym
derivatives of the measures ᾱ(i) and β̄ (i) w.r.t. the surface Lebesgue
measure, as in (7) and (8) respectively, but with δ1 = δ2 =
((3+

√
33)/8)−1

(27−3
√
33)/32

> δ′

2 and a = (27− 3
√
33)/32. We define λ : D → R,

the Radon–Nikodym derivative of the measure λ̄ w.r.t. the surface
Lebesgue measure, as follows (see Fig. 5):

λ(c + (t − 1 + δ2)/2, c + δ2 − (t − 1 + δ2)/2)

= λ(c + δ2 − (t − 1 + δ2)/2, c + (t − 1 + δ2)/2) (9)

=

⎧⎨⎩
3a(t − 1 + δ2) + c t ∈ [1 − δ2, 1 − δ′

2],

3t(a − 1/2) + 3/2(1 − δ′

2)
−3a(1 − δ2) t ∈ [1 − δ′

2, 1].

λ is defined to be 0 at every other point in D. Observe that the
function is defined on the line z1 + z2 = 2c + δ2, and thus is
symmetric about the line z1 = z2.

We construct the dual measure using λ̄ +
∑

i(ᾱ
(i)

+ β̄ (i)) as
the shuffling measure. Observe that the shuffling measure has
a significantly different structure compared to Example-1. For a
detailed proof of the theorem, we refer the reader to Appendix A.

Fig. 5. The measure λ. The y-axis expressions for the left and the right portions of
the graph are indicated using L and R. The measure is symmetric because we have
δ1 = δ2 .

Fig. 6. Optimal mechanism when c = 0, b1 = 1.2, b2 = 1.

The results of Theorems 4 and 6 are parts of a more general
result shown in Pavlov (2011). Pavlov’s proof uses a virtual val-
uation method, but our proofs use the dual approach. We now
solve another example via the dual approach, going beyond those
considered in Pavlov (2011).

2.3. Example 3: z ∼ Unif [0, 1.2] × [0, 1]

Theorem 7. Consider the case when c = 0, b1 = 1.2, and
b2 = 1. Then, the optimal mechanism is as in Fig. 6, with (δ1, δ2)
simultaneously solving

− 3δ1δ2 − c(δ1 + δ2) + b1b2 = 0.

−
3
2
δ22 + 2b2δ2 −

b22
2

+ (c − 2b2 + 3δ2)δ1 = 0.

The values of (δ1, δ2) can be solved numerically to be

(δ1, δ2) ≈ (0.678837, 0.589243).

We construct the shuffling measure ᾱ + ᾱ(o)
+ ᾱ(h) as follows,

using its respective Radon–Nikodym derivatives α, α(o), α(h) w.r.t.
the surface Lebesgue measure. The superscripts (o) and (h) stand
for ‘oblique’ and ‘horizontal’.

α(c + t, c + t ′) : =
1
1.2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3t − 1 (t, t ′) ∈ [0, 1 − δ2] × {1},
3(1 − δ2)
−c − 1 (t, t ′) ∈ [1 − δ2, 1 + δ∗

]

×{1},
0 otherwise.

(10)

α(o)(c + t, c + t ′) : =
1
1.2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3t − 1.2 (t, t ′) ∈ {1.2}
×[0, 1.2 − δ1],

2(1.2) − 3δ1 (t, t ′) ∈ {1.2}
×[1.2 − δ1, 1],

0 otherwise.

(11)
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Fig. 7. The measure α(o)
+ α(h) , for c = 0, b1 = 1.2, b2 = 1.

α(h)(c + t, c + t ′) : =
1
1.2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3(t − δ1 + 0.2) (t, t ′) ∈ {1.2}
×[δ1 − 0.2, δ2],

3(0.2 − δ∗) (t, t ′) ∈ {1.2}
×[δ2, 2/3],

0 otherwise.
(12)

We construct the dualmeasure using ᾱ+ᾱ(o)
+ᾱ(h) as the shuffling

measure. For a detailed proof of Theorem 7, see Appendix A. In
point (d) of that proof, mass from certain points on the right-hand
side boundarywill be transferred to two line segments— a 45◦ line
(oblique transfer via α(o)) and a horizontal line (via α(h)). Observe
that the shuffling measure has a significantly different structure
compared to Examples 1 and 2.

We have computed the optimal mechanisms for three rep-
resentative examples using the dual approach. The challenge in
each of the examples was to construct the appropriate shuffling
measure γ1 − γ2 − µ̄ that convex-dominates 0. We now make
some observations on the constructed shuffling measures.

• The locations of the shuffling measure exhibit significant
variations in our examples. For instance, the shuffling mea-
sure was non-zero only at the top boundary and the right
boundary ofD in Theorems 4 and 7,whereas, itwas non-zero
additionally on the line z1 + z2 = 2c + δ2 in Theorem 6.

• The structures of the shuffling measure also exhibit signif-
icant variations. The variations can be observed from the
structures in Figs. 5 and 7. This is in contrast to the un-
restricted setting solved in Thirumulanathan et al. (2016),
where the shufflingmeasures were added at a fixed location
and had a fixed structure.

• In the case of c = 0, b1 = 1.2, b2 = 1, the shufflingmeasure
had to be constructed partly for a mass transfer along the
45◦ line segment, and partly for a transfer along the hori-
zontal line segment (see point (d) in the proof of Theorem 7,
Appendix A). The example thus had two shufflingmeasures:
ᾱ(o) and ᾱ(h).

The variability in the examples above makes it difficult for us
to arrive at a general algorithmic method to construct shuffling
measures, even for the restricted setting of uniform distributions.
This motivates us to tackle the general problem using the virtual
valuation method in Pavlov (2011).

3. Exploring the virtual valuation method

Recall that we consider the problem of optimal mechanism de-
sign in a two-item, one-buyer, unit-demand setting. In this section,
we compute the optimal mechanism when the buyer’s valuation
z ∼ Unif[c, c + b1] × [c, c + b2], using the virtual valuation

method in Pavlov (2011).We startwith the following general result
from Pavlov (2011).

Theorem 8 (Pavlov, 2011, Prop. 1). If the distribution f satisfies

3f1(z)f2(z) + z1f ′

1(z)f2(z) + z2f1(z)f ′

2(z) ≥ 0∀z ∈ D,

then the allocation function q in the optimal mechanism is such that
q1 + q2 ∈ {0, 1}.

Thus, if f satisfies the above sufficient condition, then for ev-
ery z ∈ D\Z , q(z) satisfies q1(z) + q2(z) = 1. Recall that Z
is the exclusion region. Observe that the sufficient condition in
Theorem 8 is clearly satisfied for the uniform distribution Unif[c,
c+b1]×[c, c+b2]. The utility of the buyer inD\Z can bewritten as
u(z) = (z1 − z2)q1(z)+ z2 − t(z), where we have used q2 = 1− q1.
Defining δ := z1 − z2, we have δ ∈ [−b2, b1] for the case under
consideration. The following theorem from Pavlov (2011) reduces
the domains of q and t from two-dimensions to one-dimension.

Theorem 9 (Pavlov, 2011, Prop. 2). In the optimal mechanism, the
allocations and the payments, (q, t), can be rewritten so that they are
a constant for every {z ∈ D\Z : z1 − z2 = δ}.

The theorem indicates that if Z is fixed, then the domains of
(q, t) become one-dimensional in the region D\Z; they can be
written as t(δ) and q1(δ), where t : [−b2, b1] → R+, q1 :

[−b2, b1] → [0, 1], and q2 = 1 − q1. As done in Pavlov (2011),
define u1 : [−b2, b1] → R, u1(δ) := δq1(δ) − t(δ), and define

g(u1(δ), δ) :=

∫
z:z1−z2=δ,

u1(δ)+z2>0

f (z) dz.

The function g(u1(δ), δ) resembles the marginal of f along the
z1 − z2 axis, but for the fact that the marginal is computed by
integrating only up to the point where u1(z1−z2)+z2 = 0. Call this
point z∗

2 (δ), and observe that u(δ+z∗

2 (δ), z
∗

2 (δ)) = u1(δ)+z∗

2 (δ) = 0.
So z2 = z∗

2 (δ) is the boundary point between the exclusion region
Z , and the other regions. Further, {z : z1 − z2 = δ, z2 < z∗

2 (δ)}
belongs to Z . So the function g(u1(δ), δ) is actually the marginal of
f in D\Z , along the z1 − z2 axis.

Consider the problem of maximizing the expected revenue
subject to IC and IR constraints. The IC constraint, from Myerson
(1981, Lem. 2), can equivalently be written as (i) q1 increasing, and
(ii) u1(δ) has the representation u1(δ) = u1(−b2)+

∫ δ

−b2
q1(δ̃) dδ̃ for

every δ ∈ [−b2, b1]. The optimalmechanism can thus be computed
by solving the following optimization problem.

max
q1(·),u1(·)

∫ b1

−b2

(δq1(δ) − u1(δ))g(u1(δ), δ) dδ

(13)
subject to (a) q1(δ) ∈ [0, 1] ∀δ ∈ [−b2, b1]; q1 increasing;

(b) u1(δ) = u1(−b2)

+

∫ δ

−b2

q1(δ̃) dδ̃ ∀δ ∈ [−b2, b1].

The IR constraint is already taken into account because the
integral in the objective function of (13) is over D\Z , i.e., where
u(z) ≥ 0.

Observe that the problem (13) is similar to the optimization
problem in Myerson (1981, Lem. 3). To solve the problem in a sim-
ilar way, we now search for an equivalent of the virtual valuation
function φ in our setting.

Applying integration by parts to the objective function of (13),
we get

∫ b1
−b2

V̄ (δ)q1(δ) dδ, where the marginal profit function V̄ :
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Fig. 8. Illustration of the conditions in Theorem 10.

[−b2, b1] → R is defined as5

V̄ (δ) := δg(u1(δ), δ) −

∫ b1

δ

g(u1(δ̃), δ̃) dδ̃

+

∫ b1

δ

(δ̃q1(δ̃) − u1(δ̃))
∂

∂u1
g(u1(δ̃), δ̃) dδ̃.

Notice that in Myerson’s setting, we have g(u1(δ), δ) = f (δ), and
thus V̄ (δ) = δf (δ) −

∫ b1
δ

f (δ̃) dδ̃ = φ(δ)f (δ). We thus expect V̄
to have similar properties of φ. The following result from Pavlov
(2006) provides some ‘‘ironing conditions’’ on V̄ , similar to those
on φ in Myerson’s setting.

Theorem 10 (Pavlov, 2006, Lem. 3, Prop. 5). A mechanism is optimal
if and only if it satisfies the following conditions:

1. q1(δ) is strictly increasing on (δ′, δ′′) if and only if (iff) V̄ (δ) = 0
on this interval.

2. q1(δ) = 0 for δ ∈ [δ′, δ′′
] iff (a) δ′

= −b2, (b) V̄ (δ′′) = 0 unless
δ′′

= b1, (c)
∫ δ′′

δ′ V̄ (δ) dδ = k ≤ 0, and (d)
∫ x

δ′ V̄ (δ) dδ ≥ k for
all x ∈ [δ′, δ′′

].
3. q1(δ) = q ∈ (0, 1) for δ ∈ [δ′, δ′′

] iff (a) V̄ (δ′) = 0 unless
δ′

= −b2, (b) V̄ (δ′′) = 0 unless δ′′
= b1, (c)

∫ δ′′

δ′ V̄ (δ) dδ = 0,
and (d)

∫ x
δ′ V̄ (δ) dδ ≥ 0 for all x ∈ [δ′, δ′′

].

4. q1(δ) = 1 for δ ∈ [δ′, δ′′
] iff (a) V̄ (δ′) = 0 unless δ′

= −b2, (b)
δ′′

= b1, (c)
∫ δ′′

δ′ V̄ (δ) dδ = k ≥ 0, and (d)
∫ δ′′

x V̄ (δ) dδ ≤ k for
all x ∈ [δ′, δ′′

].

Define V1(δ) = −
∫ δ

−b2
V̄ (δ̃) dδ̃. We now argue that the condi-

tions in Theorem 10 can be interpreted as conditions on δ where
V1 attains its global maximum. The theorem states that the mech-
anism is optimal if and only if the following conditions hold. Take
δ′ and δ′′ to be the left and right end points of an interval under
consideration.

• Let q1(δ) = 0 ∀ δ ∈ [δ′, δ′′
]. Then (a) δ′

= −b2 and (b) V1(δ) is
maximized at δ′′ (see region A, Fig. 8).

• Let q1(δ) = q ∈ (0, 1) when δ ∈ [δ′, δ′′
]. Then V1(δ) is

maximized at both δ′ and δ′′ (see regions B and C, Fig. 8).
• Let q1(δ) be strictly increasingwhen δ ∈ [δ′, δ′′

]. ThenV1(δ) =

maxδ V1(δ) for all δ ∈ [δ′, δ′′
] (see region D, Fig. 8).

• Let q1(δ) = 1 ∀ δ ∈ [δ′, δ′′
]. Then (a) δ′′

= b1 and (b) V1(δ) is
maximized at δ′ (see region E, Fig. 8).

Observe that the conditions mentioned above are a conse-
quence of the conditions stated in Theorem 10. The conditions
2(c)–(d), 3(c)–(d), and 4(c)–(d), are representations that indicate
that the global maximum must occur at certain end points of
the interval. The value of q1 changes only at those δ where V1
attains its global maximum. We have a similar result in one-
dimension, where the value of q changes only at those z where

5 We use the termmarginal profit function, see Pavlov (2011), based on the fact
that V̄ denotes the marginal contribution of allocation q1(δ) to the profit of the
seller.

−
∫ z
0 φ(t)f (t) dt = z(1 − F (z)) is maximized (Nisan et al., 2007,

p. 338).
Theorem 10 and the above interpretation highlight the simi-

larity between the virtual valuation functions φ and V̄ . The key
difference between φ and V̄ is that the former depends only on f ,
whereas the latter depends on u1(δ) in addition, which is known
only when the optimal mechanism is known. So the computation
of V̄ requires the knowledge of the mechanism itself. However,
given a mechanism, we can use the theorem to determine if the
mechanism is optimal or not.

We now simplify the computation of the marginal profit func-
tion. We define virtual valuation function V : [−b2, b1] → R as
V (δ) := µ̄({z : z1 − z2 ≥ δ}\Z) where µ̄ is as defined in Section 2.
We then have µ̄(D) = 0 (see (3)). The following lemma shows that
V is equal to the marginal profit function V̄ .

Lemma 11. Let the allocation function q be such that there exists a
u : D → Rwith ∇u = q. Then, the functions V and V̄ are one and the
same.

Proof. See Appendix B. □

This lemma could be understood as follows.

• Recall that the expected revenue equals
∫ b1

−b2
V̄ (δ)q1(δ) dδ.

The expected revenue thus increases by V̄ (δ) for a differential
increase in q1 at δ.

• A differential increase in q1 increases u uniformly for all δ′
≥

δ, since q = ∇u.
• From (4), we know that the expected revenue equals

∫
D u dµ̄.

So a uniform increase for all δ′
≥ δ increases the expected

revenue by µ̄({z : z1 − z2 ≥ δ}\Z).
• Thus we have V̄ (δ) = µ̄({z : z1 − z2 ≥ δ}\Z).

Observe that the virtual valuation function V can be computed
if the exclusion region Z is known. In the rest of the paper, we
propose some structures for all possible values of (c, b1, b2) ≥ 0,
and then prove that the optimal mechanisms indeed have those
structures, using Theorem 10.

3.1. Optimal mechanisms for the uniform distribution on a rectangle

Without loss of generality, we assume b1 ≥ b2. The following
theorem asserts that the optimalmechanism fallswithin one of the
structures depicted in Figs. 2a–2g.

Theorem 12. Consider z ∼ Unif [c, c+b1]×[c, c+b2]. The optimal
mechanism in the unit-demand setting is described as follows.

1. Case b1 ∈ [b2, 3b2/2] : 2. Case b1 ≥ 3b2/2 :

(a) c ∈ [0, b2] : Fig. 2a (a) c ∈ [0, b2] : Fig. 2a
(b)∗ c ∈ [b2, α1] : Fig. 2b (b)∗ c ∈ [b2, β] : Fig. 2b

(c)∗ c ∈ [α1, α2] :Fig. 2c (c) c ∈ [β,
216b21b2

108b21 − 108b1b2 − 5b22
] :

Fig. 2f

(d)∗ c ∈ [α2,
27b21b

2
2

4(b31 − b32)
] : Fig. 2d (d) c ≥

216b21b2
108b21 − 108b1b2 − 5b22

:

Fig. 2g

(e) c ≥
27b21b

2
2

4(b31 − b32)
: Fig. 2e

The values of α1, α2 and β are defined as follows.

• c = α1 is obtained by solving the following equations simulta-
neously for (c, h, δ∗).

3h2/2 + ch + 2b2δ∗
− b1b2 + b22/2 = 0. (14)

27(c + h + δ∗)(b2 + δ∗)2

− 4(4b2 + 3δ∗)(3(h + δ∗)/2 + c)2 = 0. (15)
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Fig. 9. When (c, b1, b2) falls in the shaded region in the left, the optimal mechanism is as depicted in the right. Item 1 is offered for a price of c + δ1 , and item 2 is offered
for a price of c + δ2 .

Fig. 10. When (c, b1, b2) falls in the shaded region in the left, the optimal mechanism is as depicted in the right. Item 1 is offered for a price of c + δ1 , item 2 is offered for a
price of c + b2/3, and a lottery with probabilities (1 − a2, a2) is offered for a price of c + a2δ2 .

2b31/27 − (c + h)h2/2 + b2(δ∗)2 − b2δ∗(b1 − b2/2) = 0.
(16)

• c = α2 is the solution obtained by solving (15) and the following
equations simultaneously for (c, h, δ∗).

(2b31/27 + b2(δ∗)2 − b2δ∗(b1 − b2/2))(3h/2 + c)2

− (c + h)(2b2δ∗
+ b22/2 − b1b2)2/2 = 0. (17)

2b1b2(b22 + 4b2δ∗
− 2c(δ∗

+ h) − 3h(2δ∗
+ h))

− (b22 + 4b2δ∗
− 3δ∗h)(b22 + 4b2δ∗

− 2cδ∗
− 3δ∗h) = 0.

(18)

• c = β ≥ b2 solves

72b21b2 + 144b1b22 − 90b32 + (−36b21 + 84b1b2 + 399b22)c

−(96b1 + 208b2)c2 = 0. (19)

Remark 1. The starred portions in the theorem statement indicate
that we used Mathematica to verify certain inequalities in proving
those parts.

Remark 2. The values of α1 fall in the interval [b2, tb2], where
t = 3(37 + 3

√
465)/176 ≈ 1.733379. Similarly, the values of

α2 ∈ [kb2, tb2] where k ≥ 1 is the root of 32k3 − 54k2 + 19 = 0
(k ≈ 1.37214), and the values of β ∈ [tb2, 2b2). See Fig. 1.

The following is a pictorial representation of the results in
Theorem12. It depicts the regions in (c, b1, b2) space atwhich each
of the mechanisms depicted in Figs. 2a–2g turns out to be optimal.

Remark 3. The mechanisms depicted below in Figs. 12 and 13
differ only in that the line separating the regions with allocations
(1− a, a) and (1, 0) falls to the right of the line z1 − z2 = b1 − b2 in
the former, and to the left of it in the latter. These two structures
meet at b1 = 3b2/2 when the line of separation exactly falls at
z1 − z2 = b1 − b2.

Remark 4. Observe that the mechanisms depicted in Figs. 10, 11,
12, and 13 meet at b1 = 3b2/2, c = tb2. They meet because at
this (c, b1, b2), the parameter h (in Figs. 10 and 11) becomes 0, and
δ∗

= δ1 = b1/2 − b2/4 = b1/3 = b1 − b2.

Remark 5. The mechanisms depicted below in Figs. 14 and 15
differ only in that the line separating the regions with allocations
(0, 1) and (1, 0) falls to the right of the line z1 − z2 = b1 − b2 in
the former, and to the left of it in the latter. These two structures
meet at b1 = 3b2/2 when the line of separation exactly falls at
z1 − z2 = b1 − b2.

Remark 6. The mechanisms depicted in Figs. 12, 13, 14, and 15
meet at b1 = 3b2/2, c = (243/38)b2. They meet because at this
(c, b1, b2), the parameter a (in Figs. 12 and 13) becomes 0, and
b1/2 − b2/4 = b1/3 = b1 − b2.

Remark 7. Themechanisms in Figs. 14 and 15 show an interesting
result — the existence of an optimal multi-dimensional mecha-
nism without an exclusion region. An intuitive explanation for the
absence of exclusion region in Fig. 15 is as follows. Consider the
casewhere the seller offers each allocationwith a small increase in
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Fig. 11. When (c, b1, b2) falls in the shaded region in the left, the optimal mechanism is as depicted in the right. Item 1 is offered for a price of c + b1/3, item 2 is offered for
a price of c + b2/3, a lottery with probabilities (1 − a2, a2) is offered for a price of c + a2δ2 , and a lottery with probabilities (a1, 1 − a1) is offered for a price of c + a1δ1 .

Fig. 12. When (c, b1, b2) falls in the shaded region in the left, the optimal mechanism is as depicted in the right. Item 1 is offered for a price of c + b1/3, item 2 is offered for
a price of c + b2/3, and a lottery with probabilities (1 − a, a) is offered for a price of c + aδ2 .

price, say ϵ. The seller then loses a revenue of c from the valuations
{z : u(z) ≤ ϵ}, and gains an extra revenue of ϵ from the valuations
{z : u(z) ≥ ϵ}. The mechanism will have no exclusion region
when the loss dominates the gain. Observe that the expected loss
in revenue is

c · Pr({z : u(z) ≤ ϵ}) =
c

b1b2
(ϵ(b1/2 − b2/4 + ϵ))

+
(b1/2 − b2/4)

b1b2

ϵ2

2

≈
c

b1b2
(ϵ(b1/2 − b2/4)),

and that the expected gain in revenue is

ϵ · Pr({u(z) ≥ ϵ}) = ϵ · (1 − Pr({u(z) ≤ ϵ})) ≈ ϵ.

The loss dominates the gainwhen c ≥
4b1b2
2b1−b2

. (The actual threshold
will depend on more precise calculations than our order esti-
mates.) Observe that both the loss and the gain are of the order
of ϵ, which explains the possibility of the loss dominating the gain
at very high values of c. Fig. 14 has no exclusion region due to a
similar reason.

Remark 8. The notations δ1, δ2, and δ∗, used in variousmechanism
depictions, can be understood as follows. (i) The first transition
from q = (0, 0) on the bottom boundary of D occurs at δ = δ1.
(ii) Similarly, the first transition on the left boundary of D occurs at
δ = −δ2. (iii) The final transition of q on the top/right boundary of
D (in mechanisms depicted in Figs. 9–11) occurs at δ = δ∗.

For a summarizing phase diagram see Fig. 1. To see a portrayal
of all possible structures that an optimal mechanism can take, see
Figs. 2a–2g.

We now proceed to prove Theorem 12. We consider every
structure separately, and go through the following steps in order
to prove that the optimal mechanism has the specific structure.

Step 1: We compute the virtual valuation function V (δ) for every
δ ∈ [−b2, b1].

Step 2: We find the relation between the variables of interest, (δ1,
δ2, δ∗, h, a1, a2), using the equality conditions in
Theorem 10.

Step 3: We prove that the solution that satisfies the relations
obtained in Step 2 are indeed meaningful, by evaluating
bounds for the variables of interest.

Step 4: We verify that all the inequality conditions of Theorem 10
hold. The bounds evaluated in Step 3 are crucially used in
this process of verification.

We now proceed to prove parts 1(a) and 2(a) of Theorem 12.

Theorem 13. Let c ∈ [0, b2]. Then the optimal mechanism is
as depicted in Fig. 2a (see also Fig. 9). The values of δ1 and δ2 are
computed by solving the following equations simultaneously.

− 3δ1δ2 − c(δ1 + δ2) + b1b2 = 0. (20)

−
3
2
δ22 + 2b2δ2 −

b22
2

+ (c − 2b2 + 3δ2)δ1 = 0. (21)
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Fig. 13. When (c, b1, b2) falls in the shaded region in the left, the optimal mechanism is as depicted in the right. Item 1 is offered for a price of c + b1/2 − b2/4, item 2 is
offered for a price of c + b2/3, and a lottery with probabilities (1 − a, a) is offered for a price of c + aδ2 .

Fig. 14. When (c, b1, b2) falls in the shaded region in the left, the optimal mechanism is as depicted in the right. Item 1 is offered for a price of c + b1/3, and item 2 is offered
for a price of c.

Fig. 15. When (c, b1, b2) falls in the shaded region in the left, the optimal mechanism is as depicted in the right. Item 1 is offered for a price of c + b1/2 − b2/4, and item 2
is offered for a price of c.

Proof. Step 1: We compute the virtual valuation function for the
mechanism depicted in Fig. 9. Since µ̄(D) = 0, we compute V using

the formula

V (δ) = −µ̄({z : z1 − z2 < δ} ∪ Z). (22)
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V (δ) =
1

b1b2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ̄(Z) +
3
2
δ2 + 2b2δ +

b22
2

δ ∈ [−b2, −δ2]

V (−δ2) − (c − 2b2 + 3δ2)(δ + δ2) δ ∈ [−δ2, δ
∗
]

V (δ∗) − (c − 2b2)(δ − δ∗)

+
3
2
((δ1 − δ)2 − δ22) δ ∈ [δ∗, b′

]

V (b′) − (c − 2b1 + 3δ1)(δ − b1 + b2) δ ∈ [b′, δ1]

−
3
2
δ2 + 2b1δ −

b21
2

δ ∈ [δ1, b1]

(23)

where b1 − b2 is denoted as b′. For ease of notation, we drop the
factor 1

b1b2
in the rest of the paper.

Step 2: The mechanism has three unknowns: δ∗, δ1, and δ2.
Observe that the line between the points (c + b2 + δ∗, c + b2) and
(c + δ∗, c) passes through (c + δ1, c + δ2). So we have δ∗

= δ1 − δ2.

We now proceed to compute δ1 and δ2. We do so by equating
µ̄(Z) = 0 and V (δ∗) = 0. The latter follows from Theorem 10
because q1 = 0 for δ ∈ [−b2, δ∗

]. We thus obtain Eqs. (20) and
(21).

Step 3: We now show that there exists a meaningful solution
(δ1, δ2) that simultaneously solves (20) and (21). Specifically, we
show that there exists a (δ1, δ2) ∈ [

b1
2 −

b2
6 ,

2b1−c
3 ] × [

b2
3 ,

2b2−c
3 ] as

a simultaneous solution to (20) and (21). To show this, we do the
following.

• We first define δ1|δ2=x to be the value of δ1 that satisfies
(20) when δ2 = x and δ2|δ1=x to be the value of δ2 that
satisfies (20) when δ1 = x. We then show that there exists
a (δ1, δ2) ∈ [

b1
2 −

b2
6 ,

2b1−c
3 ] × [

b2
3 ,

2b2−c
3 ] satisfying (20).

We do this by showing that (a) δ1|δ2=x is continuous in x, (b)
δ1|δ2=

b2
3
≥

b1
2 −

b2
6 , and (c) δ1|δ2=

2b2−c
3

≤
2b1−c

3 . We further
show that in addition to continuity, δ1|δ2=x is also monotone;
it decreases as x increases.

• It now suffices to show that the entry and the exit points
of the curve (δ1|δ2=x, x) in the rectangle [

b1
2 −

b2
6 ,

2b1−c
3 ] ×

[
b2
3 ,

2b2−c
3 ] changes sign when substituted on the left-hand

side of (21). Thepossible entry points are ( b12 −
b2
6 , δ2|δ1=

b1
2 −

b2
6
)

and (δ1|δ2=
2b2−c

3
,

2b2−c
3 ); we substitute the entry points on

left-hand side of (21) and show that the expression is non-
negative in both cases. Similarly, the possible exit points are
(δ1|δ2=

b2
3
,

b2
3 ) and ( 2b1−c

3 , δ2|δ1=
2b1−c

3
); we substitute the exit

points on left-hand side of (21) and show that the expression
is nonpositive in both cases.

We now fill in the details. We have δ1|δ2=
b1b2−cδ2
3δ2+c and δ2|δ1=

b1b2−cδ1
3δ1+c from (20). It is clear that δ1|δ2=x is continuous, and also

monotonically decreases in x. We now verify that δ1|δ2=
b2
3
≥

b1
2 −

b2
6 ; indeed,

b1b2 − cb2/3
c + b2

≥
b1b2 − cb2/3

2b2
≥

b1b2 − b22/3
2b2

=
b1
2

−
b2
6

,

where both the inequalities hold because c ≤ b2. We now verify
that δ1|δ2=

2b2−c
3

≤
2b1−c

3 :

b1b2 − c(2b2 − c)/3
2b2

≤
4b1b2/3 − 2b2c/3

2b2
=

2b1 − c
3

,

where the inequality c2 ≤ b1b2 holds because of c ≤ b2 ≤ b1.

We now consider the points (δ1|δ2=
2b2−c

3
,

2b2−c
3 ) and (δ1|δ2=

b2
3
,

b2
3 ). Substituting δ1 =

b1b2−cδ2
c+3δ2

in (21), we obtain

−
9
2
δ32 + δ22(6b2 −

9
2
c) + δ2(4b2c − c2 −

3
2
b22 + 3b1b2) −

1
2
b22c

+ b1b2c − 2b1b22 = 0. (24)

When δ2 =
2b2−c

3 , the left-hand side of (24) equals 1
3b2(b

2
2 − c2) ≥

0, and when δ2 =
b2
3 , it equals −b2(b1 − c/3)(b2 − c) ≤ 0.

We now consider the points ( 2b1−c
3 , δ2|δ1=

2b1−c
3

) and ( b12 −

b2
6 , δ2|δ1=

b1
2 −

b2
6
). Substituting δ2 =

b1b2−cδ1
3δ1+c in (21), we obtain

−
3
2
b21b

2
2 + 2b1b22c −

1
2
b22c

2

+(6b1b22 + 6b1b2c − 3b22c − 4b2c2 + c3)δ1

+(9b1b2 −
9
2
b22 − 18b2c +

3
2
c2)δ21 − 18b2δ31 = 0. (25)

When δ1 =
2b1−c

3 , the left-hand side of (25) equals 1
6 (−8b31b2 +

3b21b
2
2 + 4b21c

2
+ 2b1b2c2 − c4). We claim that this expression is

negative for b1 ≥ b2, c ∈ [0, b2]. Observe that its derivative with
respect to c satisfies 4c(b1(2b2+b2)−c2) ≥ 0 for all c ∈ [0, b2], and
thus the expression attains its maximum when c = b2. At c = b2,
the expression equals b2(b1 − b2)(−8b21 − b1b2 + b22) which clearly
is nonpositive when b1 ≥ b2. We have proved our claim.

Now when δ1 =
b1
2 −

b2
6 , the left-hand side of (25) equals

1
24

(b2 − c)(27b21b2 − 18b1b22 − b32 + (42b1b2 − 9b21 − b22)c

+4(b2 − 3b1)c2)

=
1
24

(b2 − c)(A0 + A1c + A2c2).

Observe that we have a quadratic expression in c , with A2 being
negative. So to prove that this quadratic expression is nonnegative
for c ∈ [0, b2], it suffices to prove that it is nonnegative at c = 0 and
c = b2. At c = 0, the expression equals 27b21b2 − 18b1b22 − b32 ≥ 0
for b1 ≥ b2, and at c = b2, it equals 18b21b2 + 12b1b22 + 2b32 ≥ 0.

We have thus shown that there exists a solution (δ1 δ2) ∈ [
b1
2 −

b2
6 ,

2b1−c
3 ] × [

b2
3 ,

2b2−c
3 ] that simultaneously solves (20) and (21),

for every c ∈ [0, b2] and b1 ≥ b2.
Step 4: We now proceed to prove parts (c) and (d) in

Theorems 10(2) and 10(4). Observe that the proof is complete if
we prove that V (δ) ≤ 0 when δ ∈ [−b2, δ∗

], and V (δ) ≥ 0 when
δ ∈ [δ∗, b1]. We now compute V ′(δ) for almost every δ ∈ [−b2, b1].

V ′(δ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3δ + 2b2 δ ∈ (−b2, −δ2)
−(c − 2b2 + 3δ2) δ ∈ (−δ2, δ

∗
]

−(c − 2b2) − 3(δ1 − δ) δ ∈ [δ∗, b1 − b2)
−(c − 2b1 + 3δ1) δ ∈ (b1 − b2, δ1)
−3δ + 2b1 δ ∈ (δ1, b1).

(26)

Observe that V ′(δ) is negative when δ ∈ [−b2, −
2b2
3 ], and

positive when δ ∈ [−
2b2
3 , δ∗

] (follows because δ2 ≤
2b2−c

3 ).
We also have V (−b2) = V (δ∗) = 0. So V (δ) = V (−b2) +∫ δ

−b2
V ′(δ̃) dδ̃ ≤ 0 for all δ ∈ [−b2, δ∗

], and hence
∫ δ∗

−b2
V (δ) dδ ≤ 0,

and
∫ x

−b2
V (δ) dδ ≥

∫ δ∗

−b2
V (δ) dδ for all x ∈ [−b2, δ∗

].
We now claim that V ′(δ) is positive when δ ∈ [δ∗,

2b1
3 ], and

negative when δ ∈ [
2b1
3 , b1]. Observe that V ′(δ) is continuous at

δ = δ∗, and that it increases in the interval [δ∗, b1 −b2]. So V ′(δ) ≥

0 when δ ∈ [δ∗, b1 − b2]. Also, V ′(δ) ≥ 0 when δ ∈ [b1 − b2, δ1]
because δ1 ≤

2b1−c
3 . That V ′(δ) is positive when δ ∈ [δ1,

2b1
3 ],
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and negative when δ ∈ [
2b1
3 , b1] is obvious. We have proved our

claim.
Since we also have V (δ∗) = V (b1) = 0, it follows that

V (δ) = V (δ∗) +
∫ δ

δ∗ V ′(δ̃) dδ̃ ≥ 0 for all δ ∈ [δ∗, b1]. So we
have

∫ b1
δ∗ V (δ) dδ ≥ 0 and

∫ b1
x V (δ) dδ ≤

∫ b1
δ∗ V (δ) dδ for all x ∈

[δ∗, b1]. □

With the above theorem, we have completely solved the c ≤ b2
case. We now analyze the case at which the transition occurs. At
c = b2, when we solve (20) and (21) simultaneously, we obtain
δ2 =

b2
3 =

2b2−c
3 and δ1 =

b1
2 −

b2
6 . When c > b2, the left-

hand side of (24) still continues to change sign at δ2 =
b2
3 and

δ2 =
2b2−c

3 , but since b2
3 >

2b2−c
3 , the solution δ2 now belongs

to the interval [ 2b2−c
3 ,

b2
3 ]. We thus have (i) V (− b2

3 ) = 0 = V (δ∗),
and (ii) V ′(δ) ≥ 0 when δ ∈ [−

2b2
3 , −δ2] and V ′(δ) ≤ 0 when

δ ∈ [−δ2, δ
∗
]. These both imply that V (δ) ≥ 0 when δ ∈ [−

b2
3 , δ∗

].
So the minimum of

∫ x
−b2

V (δ) dδ can never occur at x = δ∗, causing

the condition in part (d) of Theorem 10(2) to fail.
At c = b2, a transition occurs from the structure depicted in

Fig. 2a to that in Fig. 2b. We now proceed to prove the optimality
of the structure in 2b, i.e., parts 1(b) and 2(b) in Theorem 12.

Theorem 14. Let c ∈ [b2, β] if b1 ≥ 3b2/2 and let c ∈ [b2, α1] if
b1 ∈ [b2, 3b2/2] with α1 and β as defined in Theorem 12. Then, the
optimal mechanism is as depicted in Fig. 2b (see also Fig. 10). The val-
ues of h and δ∗ are obtained by solving (14) and (15) simultaneously,
and the values of (δ1, δ2) are given by

(δ1, δ2) =

(
h + δ∗,

b1b2 − (3h/2 + c)(h + δ∗)
3/2(h + δ∗) + c

)
.

The probability of allocation a2 is given by a2 =
h+δ∗

δ2+δ∗ .

Proof. Step 1: We compute the virtual valuation function for the
mechanism depicted in Fig. 10.

V (δ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V (−δ2) − (c − 2b2 + 3δ2)(δ + δ2)

+
3
2

δ2 − h
δ2 + δ∗

(δ + δ2)2 δ ∈ [−δ2, δ
∗
]

V (δ∗) − (c − 2b2)(δ − δ∗)

+
3
2
((δ1 − δ)2 − h2) δ ∈ [δ∗, b′

]

where b1 − b2 is denoted by b′. The expression for V (δ) when
δ ∈ [−b2, −δ2] ∪ [b1 − b2, b1] remains the same as in (23).

Step 2: The mechanism has five parameters: h, δ∗, δ1, δ2, and
a2. Observe that the 45◦ line segment joining the points (c + b2 +

δ∗, c+b2) and (c+δ∗, c) passes through (c+δ1, c+h). So we have
δ1 = h + δ∗. Since q = ∇u, a conservative field, we must have the
slope of the line separating (0, 0) and (1−a2, a2) allocation regions
satisfying −

1−a2
a2

=
h−δ2
h+δ∗ . This yields a2 =

h+δ∗

δ2+δ∗ .
We now proceed to compute h, δ2 and δ∗. We do so by equating

µ̄(Z) = 0, V (δ∗) = 0, and
∫ δ∗

−
b2
3
V (δ) dδ = 0. The latter two

conditions follow from Theorem 103(b) and 3(c) because q1(δ) =

1 − a2 ∈ (0, 1) for δ ∈ [−
b2
3 , δ∗

]. We then have the following
implications.

µ̄(Z) = 0 ⇒ −
3
2
(h+ δ∗)(h+ δ2)− c(δ2 +h+ δ∗)+ b1b2 = 0. (27)

From (22), we see that V (δ∗) is the negative of µ̄ measure of the
nonconvex pentagon bound by (c, c), (c, c+b2), (c+b2+δ∗, c+b2),
(c + δ1, c + h), and (c + δ1, c). Thus

V (δ∗) = 0 ⇒ −
3
2
h2

− ch −
3
2
b2(b2 + 2δ∗)

+ b2(b2 + δ∗) + b1b2 = 0 (28)

⇒ h =
−c +

√
c2 + 3b2(2b1 − b2 − 4δ∗)

3
. (29)

Next,∫ δ∗

−
b2
3

V (δ) dδ = 0 ⇒

∫
−δ2

−
b2
3

V (δ) dδ +

∫ δ∗

−δ2

V (δ) dδ = 0

⇒ b2(δ22 − b22/9) +
1
2
(b32/27 − δ32) + b22/2(b2/3 − δ2)

− (2b2δ2 − 3δ22/2 − b22/2)(δ
∗
+ δ2)

− (c − 2b2 + 2δ2 + h)(δ∗
+ δ2)2/2 = 0

⇒
1
54

(4b2 + 3δ∗)(b2 + 3δ∗)2 −
(c + h + δ∗)

2
(δ∗

+ δ2)2 = 0.

(30)

The values of h, δ∗, and δ2 can be obtained by solving (27), (29),
and (30) simultaneously. We now proceed to prove that (h, δ∗) can
be obtained by solving (14) and (15) simultaneously. From (28), we
get

3h2/2 + ch + 2b2δ∗
− b1b2 + b22/2 = 0 (31)

which is (14). We next find an expression for δ2 + δ∗. Rearranging
(27), we get

δ2 =
b1b2 − (3h/2 + c)(h + δ∗)

3/2(h + δ∗) + c
=

2b2δ∗
+ b22/2 − δ∗(3h/2 + c)
3/2(h + δ∗) + c

(32)

where we have used (31). Thus

δ2 + δ∗
=

(b2 + 3δ∗)(b2 + δ∗)/2
3/2(h + δ∗) + c

.

Plugging this into (30), we eliminate δ2, and obtain

27(c +h+ δ∗)(b2 + δ∗)2 −4(4b2 +3δ∗)(3(h+ δ∗)/2+ c)2 = 0 (33)

which is (15). It is thus clear that (h, δ∗) can be obtained by simul-
taneously solving (14) and (15).

Step 3: We now prove that a meaningful solution that satisfies
(31) and (33) exists, by evaluating the bounds of the variables
h, δ∗, and δ2 . In Step 3a, we prove the bounds on (h, δ∗) when
b1 ≥ 3b2/2. In Step 3b, we prove the bounds on (h, δ∗) when
b1 ∈ [b2, 3b2/2]. In Step 3c, we prove the bounds on δ2 for all b1.

Step 3a: Consider the casewhen b1 ≥ 3b2/2.We consider a pair
of (δ∗, h) values that satisfy (31) as the end points, and prove that
the expression on the left-hand side of (33) changes sign at those
end points. Given that h is a decreasing function of δ∗ (see (29)),
this suffices to show the bounds of (δ∗, h).

We claim that when c ∈ [0, β], there exists a (δ∗, h) ∈

[
c2+6b1b2−7b22

12b2
,

b1
2 −

b2
4 ] × [0, 2b2−c

3 ] that solves (31) and (33) si-
multaneously. Observe that h is a decreasing function of δ∗ (see
(29)), and that the pairs (δ∗, h) = ( b12 −

b2
4 , 0) and (δ∗, h) =

( c
2
+6b1b2−7b22

12b2
,

2b2−c
3 ) satisfy (31). The choice h =

2b2−c
3 will be

motivated later. It suffices now to indicate that it is to satisfy
condition 3(d) of Theorem 10. We now prove that the left-hand
side of (33) has opposite signs at these pairs of (δ∗, h). Substituting
(δ∗, h) = ( c

2
+6b1b2−7b22

12b2
,

2b2−c
3 ), we obtain

−
(c − b2)(6b1b22 + b32 + 6b1b2c + 9b22c + b2c2 + c3)

4b2
≤ 0 (34)

for every c ≥ b2. Substituting (δ∗, h) = ( b12 −
b2
4 , 0), we obtain

1
16

(72b21b2 + 144b1b22 − 90b32 + (−36b21 + 84b1b2 + 399b22)c

− (96b1 + 208b2)c2)
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which is nonnegative for every c ∈ [0, β]. So by continuity of
(33), there exists a (δ∗, h) in the rectangle [

c2+6b1b2−7b22
12b2

,
b1
2 −

b2
4 ]×

[0, 2b2−c
3 ], andby the continuity of (31), the pair (δ∗, h) also satisfies

(31). We have thus proved our claim.
Step 3b:Consider the casewhen b1 ∈ [b2, 3b2/2].We claim that

there exists a (δ∗, h)∈ [
c2+6b1b2−7b22

12b2
, b1−b2]×[

−c+
√

c2+3b2(3b2−2b1)
3 ,

2b2−c
3 ] simultaneously solving (31) and (33). As before, substitution

of (δ∗, h) = ( c
2
+6b1b2−7b22

12b2
,

2b2−c
3 ) yields (34).Wenowsubstitute the

other pair of (δ∗, h) on the left-hand side of (33), and obtain

9b21

(
3b1 − 3b2 + 2c +

√
9b22 − 6b1b2 + c2

)
−(3b1 + b2)

(
3b1 − 3b2 + c +

√
9b22 − 6b1b2 + c2

)2

. (35)

We now show that this expression is nonnegative for every
b1 ∈ [b2, 3b2/2], c ∈ [b2, α1]. We do so by the following steps:
(a) We first differentiate the expression with respect to c and
show that the differential is nonpositive; (b) We then evaluate the
expression at c = 2(t −1)(b1 −b2)+b2 (recall from Remark 2 that
t = 3(37 + 3

√
465)/176) and show that it is nonnegative; and (c)

We finally show that α1 ≤ 2(t − 1)(b1 − b2) + b2.
We now differentiate the expression w.r.t. c. Fix v =√
9b22 − 6b1b2 + c2. When b1 ∈ [b2, 3b2/2] and c ≥ b2, we have

(i) v =

√
9b22 − 6b1b2 + c2 ≥

√
9b22 − 6(3b2/2)b2 + c2 = c,

(ii) v =

√
9b22 − 6b1b2 + c2 ≤

√
9b22 − 6(b2)b2 + c2

=

√
3b22 + c2 ≤ 2c.

So we have c ≤ v ≤ 2c. Differentiating (35) with respect to c , we
have

18b21 +
9b21c

v
− 2(3b1 + b2)(−3b2 + 3b1 + c + v)(1 + c/v)

=
18b21v + 9b21c − 2(3b1 + b2)(c + v)2 − (18b21 + 2(−6b1b2 − 3b22)(c + v))

v

=
−9b21c + 2(c + v)(3b2(2b1 + b2) − (3b1 + b2)(c + v))

v

=
−9b21c + 2(c + v)((2b1 + b2)(2b2 − c − v) + b2(2b1 + b2) − b1(c + v))

v

≤
−9b21c + 2(c + v)b22

v
≤

−9b21c + 6cb22
v

≤ 0

where the first inequality follows from c + v ≥ 2c ≥ 2b2, the
second inequality from c + v ≤ 3c , and the third inequality from
b2 ≤ b1.

We nowproceed to evaluate the expression at c = 2(t−1)(b1−
b2) + b2. Substituting c = 2(t − 1)(b1 − b2) + b2 in (35), we now
verify if

15(117
√
465 − 4189)b31 + 13(13417 − 225

√
465)b21b2

1936

−
(70269 − 981

√
465)b1b22 + 9(5021 − 21

√
465)b32

1936

+

(
−(201 + 27

√
465)b21 + (134 + 18

√
465)b1b2 + (111 + 9

√
465)b22

44

)
√9b22 − 6b1b2 +

(
2

(
3(37 + 3

√
465)

176
− 1

)
(b1 − b2) + b2

)2

≥ 0

Writing the above expression as X + Y
√
Z , we note that (i) X ≤ 0

when b1 ∈ b2[1, 1.03873], and X ≥ 0when b1 ∈ b2[1.03873, 1.5];
(ii) Y ≥ 0 when b1 ∈ b2[1, 1.04088], and Y ≤ 0 when b1 ∈

b2[1.04088, 1.5]. So we now verify if X2
− Y 2Z ≤ 0 when b1 ∈

b2[1, 1.03873], and if X2
− Y 2Z ≥ 0 when b1 ∈ b2[1.04088, 1.5].

That X + Y
√
Z ≥ 0 when b1 ∈ b2[1.03873, 1.04088] is clear since

both X and Y are positive in that interval. Evaluating X2
− Y 2Z , we

have

9
42592

(b1 − b2)(3b2 − 2b1)((20196
√
465 − 447876)b42

+(108900
√
465 − 2234628)b1b32

+(32337
√
465 − 952857)b21b

2
2

+(4841141 − 276237
√
465)b31b2

+(140940
√
465 − 1820460)b41)

which is negative when b1 ∈ b2[1, 1.03977] and positive when
b1 ∈ b2[1.03977, 1.5]. We have thus shown that the expression in
(19) is nonnegative when b1 ∈ [b2, 3b2/2], b2 ≤ c ≤ 2(t − 1)(b1 −

b2)+b2. That α1 ≤ 2(t−1)(b1−b2)+b2 is shown viaMathematica
(see Appendix D.1(4)).

Step 3c: For both the cases, we now claim that δ2 ∈ [
2b2−c

3 ,
b2
3 ].

To prove the claim, we do the following.

• We show the upper bound δ2 ≤
b2
3 via Mathematica (see

Appendix D.1(2)).
• We next show the lower bound. Since δ2 = (b1b2 − (3h/2 +

c)(h+ δ∗))/(3(h+ δ∗)/2+ c) decreases with (h+ δ∗), we first
find the upper bound on (h + δ∗).

• We then substitute this obtained upper bound on (h+δ∗) and
simplify, resulting in the lower bound δ2 ≥

2b2−c
3 .

We now fill in the details. To find the upper bound on δ1 =

h + δ∗, we first show that δ1, as a function of δ∗, decreases with
increase in δ∗. Differentiating the expression for δ1 = (h+δ∗) with
h as in (29), we get 1 −

2b2√
c2+3b2(2b1−b2−4δ∗)

which is nonpositive

for δ∗
≥ (c2 + 6b1b2 − 7b22)/(12b2). But this is exactly the lower

bound that we computed for δ∗. The highest value of δ1 thus occurs
at (h, δ∗) = ( 2b2−c

3 ,
c2+6b1b2−7b22

12b2
). Using these expressions, we get

δ1 = (h + δ∗) ≤
c2+6b1b2+b22−4b2c

12b2
.

We now substitute the end points of h + δ∗ in (32), to evaluate
the lower bound of δ2.

δ2 =
b1b2 − (3h/2 + c)(h + δ∗)

3(h + δ∗)/2 + c

≥
b1b2 − (b2 + c/2)(c2 + 6b1b2 + b22 − 4b2c)/(12b2)

(c2 + 6b1b2 + b22 + 4b2c)/(8b2)

=
2b2 − c

3
+

4b2(c2 − b22)
3(c2 + 6b1b2 + b22 + 4b2c)

≥
2b2 − c

3

where the first inequality occurs from the upper bound h ≤ (2b2 −

c)/3 and the above upper bound on (h + δ∗), and the second
inequality from c ≥ b2. We have thus shown the lower bound. We
have also shown that the probability of allocation a2 =

h+δ∗

δ2+δ∗ ≤ 1,
since δ2 ≥

2b2−c
3 ≥ h.

Step4:Wenowproceed to proveparts (c) and (d) of Theorem10
(2)–(4). The expression for V ′(δ) is the same as in the proof of
Theorem 13, except in [−δ2, δ

∗
], where it is given by

V ′(δ) = −(c −2b2 +3δ2)+3
δ2 − h
δ2 + δ∗

(δ + δ2), ∀δ ∈ (−δ2, δ
∗
]. (36)

From (26), observe that V ′(δ) is negative when δ ∈ [−b2, −
2b2
3 ]

and positive when δ ∈ [−
2b2
3 , −

b2
3 ]. We also have from (23) that
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V (−b2) = V (− b2
3 ) = 0. So V (δ) = V (−b2) +

∫ δ

−b2
V ′(δ̃) dδ̃ ≤ 0

for all δ ∈ [−b2, −
b2
3 ]. It follows that

∫ −
b2
3

−b2
V (δ) dδ ≤ 0, and that∫ x

−b2
V (δ) dδ ≥

∫ −
b2
3

−b2
V (δ) dδ for all x ∈ [−b2, −

b2
3 ]. Thus condition

(2) of Theorem 10 is verified.
We now prove that

∫ x
−

b2
3
V (δ) dδ ≥ 0 for every x ∈ [

b2
3 , δ∗

].

Observe that V ′(δ) is positive when δ ∈ [−
b2
3 , −δ2], negative

when δ ∈ [−δ2, l2] for some l2 ∈ [−δ2, δ
∗
], and positive when

δ ∈ [l2, δ∗
]. These statements follow from (i) δ2 ≥

2b2−c
3 , (ii)

V ′(δ) increasing in the interval [−δ2, δ
∗
], and (iii) h ≤

2b2−c
3 , all of

which can be obtained from (36). We also have V (− b2
3 ) = V (δ∗) =∫ δ∗

−
b2
3
V (δ) dδ = 0, which we used to derive the parameters h, δ2,

and δ∗. It follows that
∫ x

−
b2
3
V (δ) dδ ≥ 0 for all x ∈ [−

b2
3 , δ∗

]. Thus
condition (3) of Theorem 10 is verified.

The proof that the conditions of Theorem 10 (4) are satisfied
trace the same steps as in the proof of Theorem 13, provided δ1 ≤
2b1−c

3 . If δ1 >
2b1−c

3 , then V ′(δ) is no more positive in the interval
[b1 − b2, δ1]. We consider two cases.

Let b1 ≥ 3b2/2. Then we claim that V (δ) ≥ 0 holds for all
δ ∈ [δ∗, b1], evenwhen V ′(δ) ≤ 0 for δ ∈ [b1−b2, δ1]. Observe that
(i) V (δ) =

1
2 (3δ − b1)(b1 − δ) ≥ 0 for all δ ∈ [max(b1 − b2,

b1
3 ), b1],

and (ii) δ1 ≥ b1 − b2 ≥
b1
3 , when b1 ≥ 3b2/2. So, V (δ) ≥ 0 for

all δ ∈ [b1 − b2, b1]. Now V (δ) ≥ 0 also holds in the interval
δ ∈ [δ∗, b1 −b2] since V ′(δ) ≥ 0 in that interval (see the discussion
following (26)), and since V (δ∗) = 0. We have proved our claim.

We now consider the case when b1 ∈ [b2, 3b2/2]. V (δ) could

possibly be negative at some values of δ. We now evaluate
∫ b1

3
δ∗

V (δ) dδ:∫ b1
3

δ∗

V (δ) dδ

=

∫ b1−b2

δ∗

V (δ) dδ +

∫ δ1

b1−b2

V (δ) dδ +

∫ b1
3

δ1

V (δ) dδ

= −
2
27

b31 − b2(δ∗)2 + b2δ∗(b1 − b2/2) + b1b2h

−
b22h
2

− 2b2hδ∗
−

ch2

2
− h3

= −
2
27

b31 +
(c + h)

2
h2

− b2(δ∗)2 + b2δ∗(b1 − b2/2) + hV (δ∗)

where V (δ∗) is obtained from (28). The last expression is the same
as (16), since V (δ∗) = 0. From Mathematica, (16) is nonnegative
for all c ∈ [b2, α1] (see Appendix D.1(3)). Since

∫ b1
b1
3
V (δ) dδ =

2
27b

3
1 ≥ 0, we have

∫ b1
δ∗ V (δ) dδ ≥ 0. This verifies condition 4(c)

of Theorem 10.
Observe that V ′(δ) ≤ 0 only when δ ∈ [b1 − b2, δ1]. Also,

V (δ∗) = 0 = V ( b13 ). So V (δ) can be negative only when δ is in
some subset of [b1−b2,

b1
3 ], say in the interval [l1,

b1
3 ]. Observe that

the integral
∫ b1
x V (δ) dδ thus attains its maximum either at δ∗ or at

b1
3 . But we just evaluated

∫ b1
3

δ∗ V (δ) dδ ≥ 0, and so the maximum
cannot be at x =

b1
3 . Thus we have

∫ b1
x V (δ) dδ ≤

∫ b1
δ∗ V (δ) dδ for all

x ∈ [δ∗, b1]. Hence the result. □

Observe that at c = α1, we have
∫ b1

3
δ∗ V (δ) dδ = 0. When

c > α1, the quantity turns negative, causing the condition in
Theorem 10(4d) to fail. A transition occurs from the structure
depicted in Fig. 2b to that depicted in Fig. 2c. We now proceed
to prove the optimality of the structure in Fig. 2c, i.e., part 1(c) of
Theorem 12.

Theorem 15. Consider the case when b1 ∈ [b2, 3b2/2], and c ∈

[α1, α2], where α1 and α2 are as defined as in Theorem 12. Then the
optimal mechanism is as depicted in Fig. 2c (see also Fig. 11). The
values of h and δ∗ are found by solving (15) and (17) simultaneously,
and the values of δ1 and δ2 are given by

(δ1, δ2) =

(
δ∗

+
b1b2 − 2b2δ∗

− b22/2
3h/2 + c

,
b1b2 − (3h/2 + c)δ1
3/2(h + δ∗) + c

)
.

The values of a1 and a2 are given by (a1, a2) =

(
h

δ1−δ∗ , h+δ∗

δ2+δ∗

)
.

Proof. See Appendix B. This too relies on Mathematica for verifi-
cation of certain inequalities. □

Consider b1 ∈ [b2, 3b2/2]. The proof (in Appendix B) indicates
that at c = α2, we have a1 + a2 = 1, and that when c > α2,
we have a1 + a2 < 1. This causes the monotonicity of q1 to fail
(recall that q1 increasing is one of the constraints of Problem (13)).
Further, when a1 + a2 = 1, the slope of the line segment joining
(c, c+δ2), (c+h+δ∗, c+h), and the slope of the line segment joining
(c + h + δ∗, c + h), (c + δ1, c), are equal, i.e., − 1−a2

a2
= −

a1
1−a1

. The
two line segments thus turn into a single line segment that joins
(c, c + δ2), (c + δ1, c). A transition thus occurs from the structure
depicted in Fig. 2c to that in Fig. 2d, with a2 = 1 − a1 = a.

Consider b1 ≥ 3b2/2. At c = β , we have h = 0. Thus a transition
occurs from the structure depicted in Fig. 2b to that in Fig. 2f.

We now proceed to prove the optimality of the structures de-
picted in Figs. 2d–2g, i.e., parts 1(d)–(e) and 2(c)–2(d) of
Theorem 12.

Theorem 16.

(i) Consider the case when c ∈ [β,
216b21b2

108b21−108b1b2−5b22
], and b1 ≥

3b2/2, where β is as defined Theorem 12. Then the optimal
mechanism is as depicted in Fig. 2f (see also Fig. 13). The values
of δ1 and δ2 are computed by solving the following equations
simultaneously.

−
3
2
δ1δ2 − c(δ1 + δ2) + b1b2 = 0.

−
2
27

b32 +
1
2
δ1δ2(δ2 − δ1) +

c
2
(δ22 − δ21)

+
1
16

b2(2b1 − b2)2 = 0.

The value of a is given by a =
δ1

δ1+δ2
. If c ≥

216b21b2
108b21−108b1b2−5b22

,
then the optimal mechanism is as depicted in Fig. 2g (see also
Fig. 15).

(ii) Consider the case when b1 ∈ [b2, 3b2/2], and c ∈ [α2,
27b21b

2
2

4(b31−b32)
], where c = α2 is as defined in Theorem 12. Then the

optimal mechanism is as depicted in Fig. 2d (see also Fig. 12).
The values of δ1 and δ2 are computed by solving the following
equations simultaneously.

−
3
2
δ1δ2 − c(δ1 + δ2) + b1b2 = 0.

2
27

(b31 − b32) +
1
2
δ1δ2(δ2 − δ1) +

c
2
(δ22 − δ21) = 0.

The value of a is given by a =
δ1

δ1+δ2
. If c ≥

27b21b
2
2

4(b31−b32)
, then the

optimal mechanism is as depicted in Fig. 2e (see also Fig. 14).

Proof. See Appendix B. □

4. On extending to uniform distributions on general rectangles

We have computed the optimal mechanism in the two-item
unit-demand settingwhen z ∼ Unif[c, c+b1]×[c, c+b2] for every
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nonnegative (c, b1, b2). Our computation used the method based
on the virtual valuation function designed in Pavlov (2011).We can
now ask if there is a generalization of thismethod formore general
distributions, specifically for uniform distributions on rectangles
[c1, c1 + b1] × [c2, c2 + b2], when c1 ̸= c2. We conjecture that
the optimal mechanisms would have structures similar to the five
structures as in the case of c1 = c2. We now report some promising
preliminary results that support this conjecture.

Theorem 17. Consider the case when b1 ≥ b2. Let c2 ≥ 0, c1 ≥ c2,
and 2c1 − c2 ≤ b2. Then, the optimal mechanism is as depicted in
Fig. 2a (see also Fig. 9). The values of δ1 and δ2 are computed by solving
the following equations simultaneously.

− 3δ1δ2 − c2δ1 − c1δ2 + b1b2 = 0.

−
3
2
δ22 + 2b2δ2 −

b22
2

− d(b2 − δ2) + (c2 − 2b2 + 3δ2)δ1 = 0.

Proof. See Appendix B. The proof traces the same steps as in the
proof of Theorem 13. □

5. Conclusion and future work

We solved the problem of computing the optimal mechanism
for the two-itemone-buyer unit-demand setting,when the buyer’s
valuation z ∼ Unif[c, c + b1] × [c, c + b2] for arbitrary non-
negative values of (c, b1, b2). Our results show that a wide range
of structures arise out of different values of c . When the buyer
guarantees that his valuations for the items are at least c , the seller
offers different menus based on the guaranteed minimum c and
the upper bounds c + bi, i = 1, 2.

Taking a cue from the solution method in the unrestricted set-
ting (Thirumulanathan et al., 2016), we initially attempted to solve
the problem using the duality approach in Daskalakis et al. (2015),
but constructing a dualmeasure in the unit-demand setting turned
out to be intricate.We then used the virtual valuationmethod used
in Pavlov (2011) to compute the solution.We now characterize the
pros and cons of these approaches.

The duality approach could not be pursued systematically be-
cause the construction of a shuffling measure that both convex-
dominates 0 and spans over more than one line segment appears
to be difficult. Observe that in both Examples 2 and 3, there exists
some constant allocation region that is a part of both the top
boundary and the right boundary of D. So the shuffling measure
had to be constructed so that it spans over two line segments
connected at the top-right corner of D. To get around this issue,
we had to construct (i) a shuffling measure on the line z1 + z2 =

2c + δ2 in Example 2, and (ii) a shuffling measure that transfers
mass horizontally in Example 3. The problem of constructing a
‘‘generalized’’ shuffling measure that both convex-dominates 0
and also spans over two segments, thereby rendering the dual
approach practical, is a possible direction for future work.

The virtual valuation method on the other hand, did not pose
any issue when constant allocation regions span over the top-right
corner. The approach provides a generalized procedure to verify if
a menu at hand is optimal or not, under the (only) constraint that
the distribution satisfies the negative power rate condition (stated
in Theorem 8). So unlike the duality approach, we cannot use this
approach to solve the problem for general distributions. But our
results for z ∼ Unif[c, c + b1] × [c, c + b2] and the extension
to general rectangles suggest that this approach can be used to
solve the problem of computing the optimal mechanism for all
distributions satisfying the negative power rate condition. The key
challenge in solving these problems is to find the exclusion region
Z for arbitrary distributions, so that we can use Theorem 10 to

verify if the menu is optimal or not. Coming up with a generalized
procedure to compute Z is a possible direction for future work.

Our proofs used Mathematica to verify certain algebraic in-
equalities that turn out to be complicated functions of (c, b1, b2)
involving fifth roots and eighth roots of some expressions. This
leads us to the following questions. From a rather abstract per-
spective, Pavlov’s sufficient conditions lead to the identification of
a family of polynomial equalities and inequalities in the variables
(h, δ∗, δ1, δ2) in Figs. 9–15, indexed by the parameters (c, b1, b2).
In a nutshell, our work is a careful analysis of the solution space,
denoted Lc,b1,b2 , associated with the polynomial equalities and in-
equalities.We argued that Lc,b1,b2 is nonempty for every parameter
(c, b1, b2). We also captured the transitions of Lc,b1,b2 as the pa-
rameters vary. Can this view provide a more systematic procedure
to solve the case of uniform distribution on any rectangle in the
positive quadrant, or more generally, the case of any distribution
of valuations on the positive quadrant? Alternatively, can the pro-
cedure of this paper (both existence of solutions and capture of
transitions) be automated on Mathematica or other similar tool?
These are some computation related problems that might be of
interest to the computer scientists.
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Appendix A. Proofs from Section 2

Proof of Lemma 5. We first compute the quantities ᾱ(1)

([1.26, 1.26 + 2/3] × {2.26}) and
∫ 2/3
0 t dᾱ(1)(1.26 + t, 2.26):

ᾱ(1)([1.26, 1.26 + 2/3] × {2.26})

=

∫ 2/3

0
(3t − 1) dt = (3/2)(2/3)2 − 2/3 = 0,∫ 2/3

0
t dᾱ(1)(1.26 + t, 2.26)

=

∫ 2/3

0
t(3t − 1) dt =

23

33 −
1
2

·
22

32 ≥ 0.

We compute the same quantities for β (1):

β̄ (1)([1.26 + 2/3, 2.26] × {2.26})

=

∫ 43/63

2/3
(3t − 1) dt +

∫ 1

43/63
(t(1.0155) + (1.9845)(43/63)

− 2.26) dt

= (3/2)((43/63)2 − (2/3)2) − 1/63 + 1.0155(1 − (43/63)2)/2

+ (20/63)(1.9845(43/63) − 2.26) = 0,

and∫ 1

2/3
t dβ̄ (1)(1.26 + t, 2.26)

=

∫ 43/63

2/3
t(3t − 1) dt +

∫ 1

43/63
t(t(1.0155) + (1.9845)(43/63)

− 2.26) dt

= (43/63)3 − (2/3)3 − ((43/63)2 − (2/3)2)/2
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Fig. A.16. The mechanism in Fig. 3b magnified near its left-bottom corner. The full
support set D is denoted by PQRS. The slope of the dotted lines equal −(1 − a)/a
and−a/(1−a), respectively, with a = (27−3

√
33)/32. P1 , P2 are points where the

dotted lines intersect with the line denoted δ′

1δ
′

2 .

+ (1.0155)(1 − (43/63)3)/3

+ (1 − (43/63)2)(.9845(43/63) − 2.26)/2 = 0.

Now consider h to be the affine shift of any increasing convex
function g (i.e., h = θ1g + θ2, θ1 > 0, θ2 ∈ R) such that h(t) = t
for t = 43/63 and t =

2.26−1.9845∗43/63
1.0155 ≈ 0.891679. Observe that

β (1)(1.26 + t, 2.26) ≥ 0 when t ∈ [2/3, 43/63] ∪ [0.891679, 1],
and β (1)(1.26 + t, 2.26) < 0 when t ∈ (43/63, 0.891679). So we
have h(t) ≤ t when β (1) < 0, and h(t) ≥ t when β (1) > 0. Now,∫ 1

2/3
g(t) dβ̄ (1)(1.26 + t, 2.26)

=
1
θ1

∫ 1

2/3
h(t) dβ̄ (1)(1.26 + t, 2.26)

=
1
θ1

(∫ 1

2/3
(h(t) − t + t) dβ̄ (1)(1.26 + t, 2.26)

)
=

1
θ1

(∫ 1

2/3
(h(t) − t) dβ̄ (1)(1.26 + t, 2.26)

)
≥ 0

where the first equality follows from β̄ (1)([1.26 + 2/3, 2.26] ×

{2.26}) = 0, the third equality follows from
∫ 1
2/3 t dβ̄

(1)(1.26 +

t, 2.26) = 0, and the last inequality follows because sgn
(h(t) − t) = sgn

(
β (1)(t)

)
for every t ∈ [2/3, 1]. The proof of

β̄ (1)
⪰cvx 0 is similar. Hence the result. □

Proof of Theorem 6.We define q as given in Fig. 3b, and construct
u such that ∇u = q. We now construct the shuffling measure
λ̄ +

∑
i(ᾱ

(i)
+ β̄ (i)) as follows. We define α(i) and β (i) same as in

(7) and (8) respectively, but with δ1 = δ2 =
((3+

√
33)/8)−1

(27−3
√
33)/32

> δ′

2 and

a = (27 − 3
√
33)/32. We define λ : D → R, as in (9).

We now construct γ as follows. Let γ1 = γ Z
1 + γ

D\Z
1 , with

γ Z
1 = µ̄Z and γ

D\Z
1 = (µ̄D\Z

+
∑

i(ᾱ
(i)

+ β̄ (i)))+ + λ̄+. This is
supported on Z ∪ ([1.5, 2.5] × {2.5}) ∪ ({2.5} × [1.5, 2.5]) ∪ {z :

λ(z) ≥ 0}. We define γ s
1 as the Radon–Nikodym derivative of γ1

w.r.t. the surface Lebesgue measure. It is easy to see that γ s
1 (z) =

µs(z) +
∑

i(α
(i)(z) + β (i)(z)) + λ(z) when z ∈ (Z ∩ D)([1.5, 2.5] ×

{2.5}) ∪ ({2.5} × [1.5, 2.5]) ∪ {z : λ(z) ≥ 0}, and zero otherwise.
Now we specify γ (· | x) for every x in the support of γ1.

(a) For x ∈ Z , we define γ (y | x) = δx(y). This is interpreted as
no mass being transferred.

(b) For x ∈ ([1.5, 2.5] × {2.5}) ∪ ({2.5} × [1.5, 2.5]), we define
γ (y | x) = (µ(y) + µs(y) + λ(y))−/γ s

1 (x) when y ∈ {y ∈

QRSδ2P2P1δ1Q : y1 − y2 = x1 − x2}, and zero otherwise (see
Fig. A.16). (By an abuse of notation, we denote the values of
δ1 and δ2 as points marked in the Figure.) This is interpreted
as transfer of γ s

1 (x) from the boundary to the above line
segment.

(c) For {x : λ(x) > 0}, we define γ (y | x) = (µ(y)+µs(y))−/λ(x)
when y ∈ {y ∈ (δ1P1δ′

1δ1) ∪ (δ2P2δ′

2δ2) : y1 − y2 = x1 − x2},
and zero otherwise (see Fig. A.16). This is interpreted as
transfer of λ(x) from the point x on the line x1 +x2 = 2c+δ2
to the above line segment.

We then define γ (F ) =
∫
(x,y)∈F γ1(dx)γ (dy | x) for any measurable

F ∈ D × D. It is now easy to check that γ Z
2 = µ̄Z , and γ

D\Z
2 =

(µ̄D\Z
+
∑

i(ᾱ
(i)

+ β̄ (i)))− + λ̄−. Thus we have (γ1 − γ2)Z = 0, and
(γ1 − γ2)D\Z

= µ̄D\Z
+
∑

i(ᾱ
(i)

+ β̄ (i)) + λ̄.
The proof that γ satisfies all the required conditions of Lemma 3

traces the same steps as in the proof of Theorem 4. The extra step
here is to show that λ̄ ⪰cvx 0. We do this (i) by proving that both
the measure λ̄ and its mean vanish in its support set, and then (ii)
by using the same arguments in Lemma 5. We now compute∫ 1

1−δ2

λ(c + (t − 1 + δ2)/2, c + δ2 − (t − 1 + δ2)/2) dt

=

∫ δ2−
√
5/3+1

0
(3at + c) dt

+

∫ 1

1−(
√
5/3−1)

(3t(a − 1/2) + 3/2(1 − (
√
5/3 − 1))

− 3a(1 − δ2)) dt

= 3/2(δ2 −

√
5/3 + 1)2 + c(δ2 −

√
5/3 + 1)

+ 3/2(a − 1/2)(1 − (2 −

√
5/3)2)

+ (
√
5/3 − 1)(3/2(2 −

√
5/3) − 3a(1 − δ2))

= 0

where the last equality follows by putting in the values of c and δ2.
We also have∫ 1

1−δ2

(t − 1)λ(c + (t − 1 + δ2)/2, c + δ2 − (t − 1 + δ2)/2) dt

+

∫ 1

1−δ1

(t − 1)λ(c + δ1 + (t − 1 + δ1)/2,

c − (t − 1 + δ1)/2) dt = 0

which follows because (i) λ is symmetric about the line t = 1, and
(ii) (t − 1) is an odd function about the line t = 1. The proof of
λ̄ ⪰cvx 0 now traces the same steps as in Lemma 5. □

Proof of Theorem 7. We define q as given in Fig. 6, and construct
u such that ∇u = q. Defining δ∗

:= δ1 − δ2, we now construct the
shuffling measure ᾱ + ᾱ(o)

+ ᾱ(h), according to the terms defined
in (10), (11), and (12).

We now construct γ as follows. Let γ1 = γ Z
1 + γ

D\Z
1 , with

γ Z
1 = µ̄Z and γ

D\Z
1 = (µ̄D\Z

+ ᾱ+ ᾱ(o)
+ ᾱ(h))+. This is supported on

Z ∪ ([0, 1.2] × {1}) ∪ ({1.2} × [0, 1]). We define γ s
1 as the Radon–

Nikodym derivative of γ1 w.r.t. the surface Lebesgue measure. It
is easy to see that γ s

1 (z) = µs(z) + α(z) + α(o)(z) + α(h)(z) when
z ∈ (Z ∩ D)([0, 1.2] × {1}) ∪ ({1.2} × [0, 1]), and zero otherwise.
Now we specify γ (· | x) for every x in the support of γ1.

(a) For x ∈ Z , we define γ (y | x) = δx(y). This is interpreted as
no mass being transferred.
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(b) For x ∈ ([0, 1+δ∗
]×{1})∪({1.2}×([0, δ1−0.2]∪[2/3, 1])),

we define γ (y | x) = (µ(y) + µs(y))−/γ s
1 (x) when y ∈

{y ∈ D\Z : y1 − y2 = x1 − x2}, and zero otherwise. This
is interpreted as transfer of γ s

1 (x) from the boundary to the
above line segment.

(c) For x ∈ ([1 + δ∗, 1.2] × {1}), we define γ (y | x) = (µ(y) +

µs(y))−/γ s
1 (x) when {y1 − y2 = x1 − x2, y2 ∈ [2/3, 1]}, and

zero otherwise. Again, this is interpreted as transfer of γ s
1 (x)

from the boundary to the above line segment.
(d) For x ∈ ({1.2}×[δ1−0.2, 2/3]), we define γ (y | x) = (µ(y)+

µs(y))−/γ s
1 (x),when y ∈ {y ∈ D\Z : y1−y2 = x1−x2}∪{y2 =

x2, y1 − y2 ∈ [δ∗, b1 − b2]}, and zero otherwise. This is
interpreted as a transfer of γ s

1 (x) from the boundary to two
line segments — one is a 45◦ line segment contained within
D\Z , and the other is a horizontal line contained within
{y1 − y2 ∈ [δ∗, b1 − b2]}. The transfers occur respectively
due to the shufflingmeasures α(o), oblique transfer, and α(h),
horizontal transfer.

We then define γ (F ) =
∫
(x,y)∈F γ1(dx)γ (dy | x) for any mea-

surable F ∈ D × D. It is now easy to check that γ Z
2 = µ̄Z , and

γ
D\Z
2 = (µ̄D\Z

+ ᾱ + ᾱ(o)
+ ᾱ(h))−. Thus we have (γ1 − γ2)Z = 0,

and (γ1 − γ2)D\Z
= (µ̄D\Z

+ ᾱ + ᾱ(o)
+ ᾱ(h)).

The proof that γ satisfies all the required conditions of Lemma 3
traces the same steps as in the proof of Theorem 4. The extra step
here is to show that ᾱ ⪰cvx 0, ᾱ(o)

+ ᾱ(h)
⪰cvx 0. We show ᾱ ⪰cvx 0

by first proving that ᾱ([0, 1 + δ∗
] × {1}) = 0 ≤

∫ 1+δ∗

0 t ᾱ(dt, 1),
and then by tracing the same steps as in the proof of Lemma 5. The
convex dominance for the other measure is also shown the same
way. We now fill in the details. To obtain ᾱ ⪰cvx 0, we first verify
that

ᾱ([0, 1 + δ∗
] × {1}) =

∫ 1−δ2

0
(3t − 1) dt +

∫ 1+δ∗

1−δ2

(2 − 3δ2) dt

= 3/2(1 − δ2)2 − (1 − δ2) + δ1(2 − 3δ2)

= 0,

and then verify that∫ 1+δ∗

0
t ᾱ(dt, 1)

=

∫ 1−δ2

0
t(3t − 1) dt +

∫ 1+δ∗

1−δ2

t(2 − 3δ2) dt

= (1 − δ2)3 − (1 − δ2)2/2 + (2 − 3δ2)((1 + δ∗)2 − (1 − δ2)2)/2

≈ 0.103227 ≥ 0.

We then complete the proof of ᾱ ⪰cvx 0 by tracing the same steps
as in the proof of Lemma 5.

To prove that ᾱ(o)
+ ᾱ(h)

⪰cvx 0, we first verify that

(ᾱ(o)
+ ᾱ(h))({1.2} × [0, 1])

=

∫ 1.2−δ1

0
(3t − 1.2) dt +

∫ 1

1.2−δ1

(2.4 − 3δ1) dt

+

∫ δ2

δ1−0.2
3(t − δ1 + 0.2) dt +

∫ 2/3

δ2

3(0.2 − δ∗) dt

= 3/2(1.2 − δ1)2 − 1.2(1.2 − δ1) + (δ1 − 0.2)(2.4 − 3δ1)

+ 3/2(0.2 − δ∗)2 + (2 − 3δ2)(0.2 − δ∗)

= 0,

and then verify that∫ 1

0
t (ᾱ(o)

+ ᾱ(h))(1.2, dt)

=

∫ 1.2−δ1

0
t(3t − 1.2) dt +

∫ 1

1.2−δ1

t(2.4 − 3δ1) dt

+

∫ δ2

δ1−0.2
3t(t − δ1 + 0.2) dt +

∫ 2/3

δ2

3t(0.2 − δ∗) dt

= (1.2 − δ1)3 − 0.6(1.2 − δ1)2 + (1.2 − 3δ1/2)(1 − (1.2 − δ1)2)

+ (δ32 − (δ1 − 0.2)3) − 3/2(δ1 − 0.2)(δ22 − (δ1 − 0.2)2)

+ 3/2(4/9 − δ22)(0.2 − δ1 + δ2)

≈ 0.137171 ≥ 0.

The proof of ᾱ(o)
+ ᾱ(h)

⪰cvx 0 is then completed by tracing the
same steps of the proof of Lemma 5. □

Appendix B. Proofs from Sections 3 and 4

Proof of Lemma 11. Recall that the marginal profit function is
defined as V̄ (δ) = δg(u1(δ), δ) −

∫ b1
δ

g(u1(δ̃), δ̃) dδ̃ +
∫ b1

δ
(δ̃q1(δ̃) −

u1(δ̃)) ∂
∂u1

g(u1(δ̃), δ̃) dδ̃. Consider the term
∫ b1

δ
g(u1(δ̃), δ̃) dδ̃.∫ b1

δ

g(u1(δ̃), δ̃) dδ̃ =

∫ b1

δ

∫
z:z∈D\Z,z1−z2=δ̃

f (z) dz dδ̃

=

∫
z:z∈D\Z,z1−z2≥δ

f (z) dz.

We use integration by parts on
∫
X (z.∇h(z) − h(z))f (z) dz, and we

obtain
∫
X h(z)ν(z) dz +

∫
∂X h(z)νs(z) dz. Here,

ν(z) := −z · ∇f (z) − 3f (z), z ∈ X; νs(z) := (z · n(z))f (z), z ∈ ∂X .

We regard ν as the density of a measure that is absolutely con-
tinuous with two-dimensional Lebesgue measure, and νs as the
density of ameasure that is absolutely continuouswith the surface
Lebesguemeasure. Defining themeasure ν̄(A) :=

∫
X 1A(z)ν(z) dz+∫

∂X 1A(z)νs(z) dz for all measurable sets A and substituting h(z) =

1∀z ∈ X , we get
∫
X (z.∇h(z) − h(z))f (z) dz =

∫
X −f (z) dz = ν̄(X).

So we have∫ b1

δ

g(u1(δ̃), δ̃) dδ̃ =

∫
z:z∈D\Z,z1−z2≥δ

f (z) dz

= −ν̄(z ∈ D\Z : z1 − z2 ≥ δ).

We now compare the components of the measures µ̄ and ν̄ in
some set X ⊆ D. The functions µ and ν are clearly equal. The
function νs(z) is nonzero in every z ∈ ∂X , whereasµs(z) is nonzero
only when z ∈ (X ∩ ∂D). In other words, νs(z) is also nonzero for
every z ∈ (∂X\∂D), when compared with µs(z). We now show
that the terms δg(u1(δ), δ) and

∫ b1
δ

(δ̃q1(δ̃)−u1(δ̃)) ∂
∂u1

g(u1(δ̃), δ̃) dδ̃
cancel those ‘‘extra’’ nonzero values. In other words, we show that

δg(u1(δ), δ) +

∫ b1

δ

(δ̃q1(δ̃) − u1(δ̃))
∂

∂u1
g(u1(δ̃), δ̃) dδ̃

= (µ̄ − ν̄)(z : z ∈ D\Z, z1 − z2 ≥ δ), (B.1)

and this completes our proof. We show this for the mechanism
depicted below in Fig. B.17, with the exclusion region Z being a
convex, decreasing set. Observe that all the mechanisms depicted
in Figs. 2a–2g have this property.

Define z∗

2 : [−δ2, δ1] → [c, c + δ2] as

z∗

2 (δ) = {z2 ∈ [c, c + b2] : u(z2 + δ, z2) = 0,

u(z2 + δ + h, z2 + h) > 0 for all h > 0 sufficiently small}.

Observe that z∗

2 (δ) is the value of z2 in the curve (−δ2δ1) that
separates Z and D\Z , when z1 − z2 = δ. So z∗

2 is decreasing with δ,
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with z∗

2 (−δ2) = c + δ2, and z∗

2 (δ1) = c. Also, the curve (−δ2δ1) can
be represented by the points {(δ+z∗

2 (δ), z
∗

2 (δ)), δ ∈ [−δ2, δ1]}. We
now compute u1(δ) for every δ ∈ [−b2, b1]. We use the fact that
u(z) = 0 when z ∈ Z , and u(z) = u1(z1 − z2) + z2.

u1(δ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−c − δ2 −

∫
−δ2

δ

q1(δ̃) dδ̃ if δ ∈ [−b2, −δ2]

−z∗

2 (δ) if δ ∈ [−δ2, δ1]

−c +

∫ δ

δ1

q1(δ̃) dδ̃ if δ ∈ [δ1, b1].

Using the values of u1(δ), we now compute g(u1(δ), δ).

g(u1(δ), δ) =
1

b1b2

⎧⎪⎪⎨⎪⎪⎩
b2 + δ if δ ∈ [−b2, −δ2]

b2 + c + u1(δ) if δ ∈ [−δ2, b1 − b2]
b1 − δ + c + u1(δ) if δ ∈ [b1 − b2, δ1]
b1 − δ if δ ∈ [δ1, b1].

For ease of notation, we drop the factor 1/(b1b2) in the rest of the
proof.

To show (B.1), we consider the following three cases: (i) δ ∈

[δ1, b1], (ii) δ ∈ [−δ2, δ1], and (iii) δ ∈ [−b2, −δ2] (see Fig. B.17).
In case (i), consider δ = δ(1). The measures µ̄ and ν̄ differ only
in that ν̄ has an extra nonzero line measure on the line segment
{z ∈ D\Z : z1 − z2 = δ(1)}. We thus have

(µ̄ − ν̄)(z ∈ D\Z : z1 − z2 ≥ δ(1)) = −

∫
z∈D\Z :

z1−z2=δ(1)

νs(z) dz

=

∫
z∈D\Z :

z1−z2=δ(1)

(z1 − z2)f (z) dz = δ(1)g(u1(δ(1)), δ(1)).

Now observe that ∂
∂u1

g(u1(δ), δ) = 0 when δ ∈ [δ1, b1]. So (B.1)
holds.

In case (ii), consider δ = δ(2). Then, ν̄ has an extra nonzero line
measure on (i) the line segment {z ∈ D\Z : z1 − z2 = δ(2)}, and (ii)
the curve δ1x. Now we have

(µ̄ − ν̄)(z ∈ D\Z : z1 − z2 ≥ δ(2))

=

∫
z∈D\Z :

z1−z2=δ(2)

(z1 − z2)f (z) dz −

∫
z∈curve δ1x

(z · n(z))f (z) dz

= δ(2)g(u1(δ(2)), δ(2)) +

∫ δ1

δ(2)
((z∗

2 (δ) + δ)q1(δ) + z∗

2 (δ)(1 − q1(δ))) dδ

= δ(2)g(u1(δ(2)), δ(2)) +

∫ δ1

δ(2)
(z∗

2 (δ) + δq1(δ)) dδ.

where the third equality follows because (i) ∇u = q, and (ii)
q1(δ) + q2(δ) = 1 for z ∈ D\Z . Now observe that we have

∂
∂u1

g(u1(δ), δ) = 1 when δ ∈ [−δ2, δ1]. Therefore,

δ(2)g(u1(δ(2)), δ(2)) +

∫ b1

δ(2)
(δq1(δ) − u1(δ))

∂

∂u1
g(u1(δ), δ) dδ

= δ(2)g(u1(δ(2)), δ(2)) +

∫ δ1

δ(2)
(z∗

2 (δ) + δq1(δ)) dδ.

Eq. (B.1) thus holds for case 2.
In case (iii), consider δ = δ(3). Then, ν̄ has an extra nonzero line

measure on (i) the line segment {z ∈ D\Z : z1 − z2 = δ(3)}, and (ii)
the curve (−δ2δ1). Now by an analysis similar to case 2, it follows
that

(µ̄ − ν̄)(z ∈ D\Z : z1 − z2 ≥ δ(3))

= δ(3)g(u1(δ(3)), δ(3)) +

∫ δ1

−δ2

(z∗

2 (δ) + δq1(δ)) dδ

Fig. B.17. The structure of a typical mechanism. The variables marked in the
boundary denote the values of δ.

= δ(3)g(u1(δ(3)), δ(3)) +

∫ b1

δ(3)
(δq1(δ) − u1(δ))

∂

∂u1
g(u1(δ), δ) dδ. □

Proof of Theorem 15.
Step 1:We compute the virtual valuation function of themech-

anism depicted in Fig. 11.

V (δ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V (−δ2) − (c − 2b2 + 3δ2)(δ + δ2)

+
3
2

δ2 − h
δ2 + δ∗

(δ + δ2)2 δ ∈ [−δ2, δ
∗
]

V (δ∗) − (c − 2b2)(δ − δ∗)

+
3h
2

(δ1 − δ)2

δ1 − δ∗
−

3h
2

(δ1 − δ∗) δ ∈ [δ∗, b′
]

where b1 − b2 is indicated as b′. The expression for V (δ) when
δ ∈ [−b2, −δ2] ∪ [δ1, b1] remains the same as in (23), and the
expression when δ ∈ [b′, δ1] is given by

V (δ) = V (b′) − (c − 2b1)(δ − b′)

−
3
2
(δ2 − (b′)2 −

h
δ1 − δ∗

((δ1 − δ)2 − (δ1 − b′)2)).

Step2: Themechanismhas six unknowns:h, δ∗, δ1, δ2, a1, and a2.
Since q = ∇u, a conservative field, we must have the slope of the
line separating (0, 0) and (1 − a2, a2) allocation regions satisfying
−

1−a2
a2

=
h−δ2
h+δ∗ , which yields a2 =

h+δ∗

δ2+δ∗ . Similarly, the slope of the

line separating (0, 0) and (a1, 1−a1) allocation regionsmust satisfy
−

a1
1−a1

=
h

δ1−δ∗−h , which yields a1 =
h

δ1−δ∗ .
We compute the other four unknowns by equating µ̄(Z) = 0,

V (δ∗) = 0,
∫ δ∗

−
b2
3
V (δ) dδ = 0, and

∫ b1
3

δ∗ V (δ) dδ = 0. The latter
three conditions follow from Theorem 10 3(b) and 3(c) because
q1(δ) = 1 − a2 for δ ∈ [−

b2
3 , δ∗

], and q1(δ) = a1 for δ ∈ [δ∗,
b1
3 ].

We then have the following implications.

µ̄(Z) = 0 ⇒ −(3h/2 + c)(δ1 + δ2) − 3δ2δ∗/2 + b1b2 = 0. (B.2)

From (26), we see that V (δ∗) is the negative of µ̄ measure of the
nonconvex pentagon bound by (c, c), (c, c+b2), (c+b2+δ∗, c+b2),
(c + h + δ∗, c + h), and (c + δ1, c). Thus

V (δ∗) = 0 ⇒ −(3h/2+c)(δ1−δ∗)−2b2δ∗
−b22/2+b1b2 = 0. (B.3)

The expression for
∫ δ∗

−
b2
3
V (δ) dδ remains the same as in (31).∫ δ∗

−
b2
3

V (δ) dδ = 0 ⇒
1
54

(4b2 + 3δ∗)(b2 + 3δ∗)2

−
c + h + δ∗

2
(δ∗

+ δ2)2 = 0. (B.4)
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Next∫ b1
3

δ∗

V (δ) dδ = 0

⇒

∫ b1−b2

δ∗

V (δ) dδ +

∫ δ1

b1−b2

V (δ) dδ +

∫ b1
3

δ1

V (δ) dδ = 0

⇒ −
2
27

b31 + b1b2δ1 +
1
2
(−b22δ1 + 2b2δ∗(−2δ1 + δ∗)

− (δ1 − δ∗)2(c + 2h)) = 0

⇒
c + h
2

(δ1 − δ∗)2 − b2(δ∗)2 +
b2δ∗

2
(2b1 − b2)

−
2
27

b31 + (δ1 − δ∗)V (δ∗) = 0. (B.5)

The values of h, δ∗, δ1 and δ2 can be obtained by solving these
four equations simultaneously. We now proceed to prove that
(h, δ∗) can be computed by solving (15) and (17) simultaneously.

We first find an expression for δ2 + δ∗. Rearranging (B.2), we
have

δ2 =
b1b2 − (3h/2 + c)δ1
3/2(h + δ∗) + c

(B.6)

Similarly, rearranging (B.3), we have δ1 = δ∗
+

b1b2−2b2δ∗
−b22/2

3h/2+c .
Substituting δ1 in (B.6), we get

δ2 + δ∗
=

b1b2 − (3h/2 + c)(δ1 − δ∗) +
3
2 (δ

∗)2

3/2(h + δ∗) + c

=
(b2 + 3δ∗)(b2 + δ∗)/2

3/2(h + δ∗) + c
.

Plugging this into (B.4), we eliminate δ2. Similarly, plugging (δ1 −

δ∗) =
b1b2−2b2δ∗

−b22/2
3h/2+c (obtained by rearranging (B.3)) in (B.5), we

eliminate δ1. We thus solve the following equations:

27(c + h + δ∗)(b2 + δ∗)2 − 4(4b2 + 3δ∗)(3/2(h + δ∗) + c)2 = 0

(2b31/27 + b2(δ∗)2 − b2δ∗(b1 − b2/2))(3h/2 + c)2

−
(c + h)

2
(2b2δ∗

+ b22/2 − b1b2)2 = 0

which are (15) and (17), respectively.
Step 3:Wenowproceed to evaluate the bounds of the variables,

in order to the prove the existence of a meaningful solution that
solves (15) and (17). In Step 3a, we first prove that the condition
q1 increasing in Problem (13) is satisfied only when the left-hand
side of (18) is nonnegative. In Steps 3b–3d, we prove the bounds
on (h, δ∗), δ1 and δ2, respectively.

Step 3a: We compute the values of c where monotonicity of q1
holds. Observe thatmonotonicity of q1 holdswhen 1−a2 ≤ a1, and
that of q2 holds when 1 − a1 ≤ a2. We thus verify if a1 + a2 ≥ 1.
On substituting the expressions for a1 and a2, we obtain

(h + δ∗)(3/2(h + δ∗) + c)
(3/2(δ∗)2 + 2b2δ∗ + b22/2)

+
h(3h/2 + c)

(b1b2 − 2b2δ∗ − b22/2)
≥ 1

⇒ (b22 + 4b2δ∗
− 3δ∗h)(b22 + 4b2δ∗

− 2cδ∗
− 3δ∗h)

−2b1b2(b22 + 4b2δ∗
− 2c(δ∗

+ h) − 3h(2δ∗
+ h)) ≥ 0.

The monotonicity condition thus amounts to verifying if the left-
hand side of (18) is nonnegative. We verify via Mathematica that
the expression is nonnegative for c ∈ [b2, α2], and that α2 ≤ 2(t −

1.4)(b1−b2)+1.4b2 (see AppendixD.2(6–7)).We thus compute the
bounds of h, δ∗, δ1, and δ2 when c ∈ [b2, 2(t−1.4)(b1−b2)+1.4b2].

Step 3b: We now evaluate the bounds on δ1 and δ2 in order to
prove the existence of a meaningful solution that solves (15) and
(17) simultaneously. Specifically, we now prove that there exists
(h, δ∗) ∈ [0, 2b2−c

3 ] × [0, b1 − b2] that simultaneously solves (15)
and (17). We show this using the same techniques as in Step 3 of
proof of Theorem 13.

We first show that δ∗
|h is continuous in h, and decreases as h

increases. We rewrite (17) as follows.

((3h/2 + c)2 − 2b2(c + h))(b2(δ∗)2 − b2(b1 − b2/2)δ∗)

+
2b31
27

(3h/2 + c)2 −
b22
2
(b1 − b2/2)2(c + h) = 0

Solving this equation for δ∗, we obtain

δ∗
|h =

b1
2

−
b2
4

−
3b2 − 2b1

4
3h/2 + c

3

√
(8b1 − 3b2)/3

2b22(c + h) − b2(3h/2 + c)2

To prove the continuity of δ∗
|h in h, it suffices to show that the term

2b22(c+h)−b2(3h/2+c)2 is strictly positive for the desired values of
h, since the expression is quadratic with negative coefficient on h2.
At h = 0, the expression equals b2c(2b2−c) > 0 for all c ≤ 2b2, and
at h =

2b2−c
3 , the expression equals b2/12(2b2 − c)(2b2 + 3c) > 0.

Thus δ∗
|h is continuous in hwhen h ∈ [0, 2b2−c

3 ].
To prove that δ∗

|h decreases in h, it suffices to prove that
c+h

(3h/2+c)2
decreases with h. We prove it by differentiating the term

w.r.t. h, and proving that the numerator is nonpositive. The numer-
ator of the derivative is (3h/2+ c)(−3h/2−2c) ≤ 0.We have thus
shown that δ∗

|h decreases as h increases.
We now show that δ∗

|
h= 2b2−c

3
≤ b1 − b2. From (17), we obtain

δ∗
|
h= 2b2−c

3
=

b1
2

−
b2
4

−
(3b2 − 2b1)

4
(2b2 + c)

3b2

√
b2(8b1 − 3b2)

(2b2 − c)(2b2 + 3c)
.

Observe that (a) 2b2+c ≥ 3b2 since c ≥ b2, and (b) b2(8b1−3b2)
(2b2−c)(2b2+3c) ≥

1 since minb1∈[b2,3b2/2](b2(8b1 − 3b2)) = 5b22 and maxc≥b2 ((2b2 −

c)(2b2 + 3c)) = 5b22. We thus have

δ∗
|
h= 2b2−c

3
≤

b1
2

−
b2
4

−
3b2 − 2b1

4
= b1 − b2.

We now show that δ∗
|h=0≥ 0. From (17), we obtain

δ∗
|h=0=

b1
2

−
b2
4

−
(3b2 − 2b1)

36

√
3c(8b1 − 3b2)
b2(2b2 − c)

.

When b1 ∈ [b2, 3b2/2], δ∗
|h=0 decreases when c increases from

b2 to 2b2. We thus obtain a lower bound on δ∗ by substituting an
upper bound on c. We use c ≤ 1.4b2 + 2(1.75 − 1.4)(b1 − b2)
instead of 1.4b2 + 2(t − 1.4)(b1 − b2) to simplify the calculation.

δ∗
|h=0≥

2b1 − b2
4

−
3b2 − 2b1

36

√
2.1(b1 + b2)(8b1 − 3b2)

b2(1.3b2 − 0.7b1)

To prove that this expression is nonnegative, it suffices to prove
that (9(2b1 − b2))2(b2(1.3b2 − 0.7b1)) ≥ (3b2 − 2b1)2(2.1(b1 +

b2))(8b1 − 3b2). Simplifying this expression, we obtain

−67.2b41 − 67.2b31b2 + 648b21b
2
2 − 648b1b32 + 162b42 ≥ 0
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which is true for b1 ∈ [b2, 3b2/2]. We have thus shown that
δ∗

|h=0≥ 0.
We now proceed to prove that (a) substituting the entry points

(h|δ∗=0, 0) and ( 2b2−c
3 , δ∗

|
h= 2b2−c

3
) makes the expression nonposi-

tive, and (b) substituting the exit points (0, δ∗
|h=0) and

(h|δ∗=b1−b2 , b1 −b2) on left-hand side of (15) makes the expression
nonnegative.

We now consider the entry point (h|δ∗=0, 0). Substituting δ∗
=

0 on (17), we obtain 2b31(3h/2 + c)2/27 − (c + h)b22(b1 − b2/2)2/2
= 0. Let h = h|δ∗=0 solve this equation. Substituting (h, δ∗) =

(h|δ∗=0, 0) in (15), we get 27(c + h|δ∗=0)b22 − 16b2(3h|δ∗=0/2+ c)2.
We now prove that this expression is nonpositive.

27(c + h|δ∗=0)b2 − 16(3h|δ∗=0/2 + c)2

= 27(c + h|δ∗=0)b2 −
108(c + h|δ∗=0)b22(b1 − b2/2)2

b31

=
27(c + h|δ∗=0)b2

b31
(b31 − 4b2(b1 − b2/2)2)

=
27(c + h|δ∗=0)b2

b31
(b1 − b2)(b21 − 3b1b2 + b22) ≤ 0

when b1 ∈ [b2, 3b2/2]. The first equality occurs since h|δ∗=0 solves
2b31(3h/2 + c)2/27 − (c + h)b22(b1 − b2/2)2/2 = 0.

We now consider the entry point ( 2b2−c
3 , δ∗

|
h= 2b2−c

3
). We first

prove that δ∗
|
h= 2b2−c

3
≥ −

2b2
3 .

δ∗
|
h= 2b2−c

3
≥ −

2b2
3

⇒
b1
2

−
b2
4

−
(3b2 − 2b1)

4
(2b2 + c)

3b2

√
b2(8b1 − 3b2)

(2b2 − c)(2b2 + 3c)

≥ −
2b2
3

⇒ (6b1 + 5b2)2b2(2b2 − c)(2b2 + 3c)

≥ (3b1 − 2b2)2(2b2 + c)2(8b1 − 3b2)

Consider b2 ≤ c ≤ tb2, and b1 ∈ [b2, 3b2/2] (recall that t =

3(37 + 3
√
465)/176). The inequality then clearly holds, since we

have (a) 6b1 + 5b2 ≥ 8b1 − 3b2, (b) (6b1 + 5b2)(2b2 − c) ≥

(6b1 + 5b2)b2/4 ≥ b22 ≥ (3b2 − 2b1)2, (c) b2 ≥ 3b2 − 2b1, and (d)
2b2 + 3c ≥ 2b2 + c. We have thus shown that δ∗

|
h= 2b2−c

3
≥ −

2b2
3 .

Substituting (h, δ∗) = ( 2b2−c
3 , δ∗

|
h= 2b2−c

3
) on the left-hand side

of (15), we get

(b2 − c)(2b22 + 4b2c + 3(b2 + c)δ∗
|
h= 2b2−c

3
) ≤ 0

for c ≤ b2, since δ∗
|
h= 2b2−c

3
≥ −

2b2
3 .

The expression is thus nonpositive at the entry points. We now
proceed to prove that the expression is nonnegative at the exit
points.

We now consider the exit point (0, δ∗
|h=0). Substituting h = 0

on the left-hand side of (17), we obtain

δ∗
|h=0=

b1
2

−
b2
4

−
(3b2 − 2b1)

36

√
3c(8b1 − 3b2)
b2(2b2 − c)

Substituting (h, δ∗) = (0, δ∗
|h=0) on the left-hand side of (15),

we get

27b22c−16b2c2 + (27b22 +6b2c−12c2)δ∗
|h=0+9(2b2 − c)(δ∗

|h=0)2.

From Mathematica, this is nonnegative when c ∈ [b2, 2(t −

1.4)(b1 − b2) + 1.4b2] (see Appendix D.2(1)).

Fig. B.18. Mechanism in Fig. 2b (in dotted lines) superimposed on mechanism in
Fig. 2c (in solid lines). Figure indicates the case when (a) (hII , δ

∗

II ) < (hIII , δIII ); (b)
(hII , δ

∗

II ) < (hIII , δIII ).

We now consider the exit point (h|δ∗=b1−b2 , b1 − b2). Substitut-
ing δ∗

= b1 − b2 in (17), we obtain

h|δ∗=b1−b2=
9b22 − 4c(b1 + 3b2) + 3b2

√
9b22 + 4c(b1 + 3b2)

6(b1 + 3b2)
.

Substituting (h, δ∗) = (h|δ∗=b1−b2 , b1 − b2) in (15), we get

27b21(b1 − b2 + c + h|δ∗=b1−b2 ) − (3b1 + b2)

× (3b1 − 3b2 + 2c + 3h|δ∗=b1−b2 )
2.

From Mathematica, this is nonnegative when c ∈ [b2, 2(t −

1.4)(b1 − b2) + 1.4b2] (Appendix D.2(2)). The expression is thus
nonnegative at the exit points.

We have thus shown that there exists a (h, δ∗) ∈ [0, 2b2−c
3 ] ×

[0, b1 − b2] that simultaneously solves (15) and (17), for all values
of (c, b1, b2) in the statement of the theorem.

Step 3c: We now prove that δ1 ∈ [h + δ∗,
b1
3 ]. To prove δ1 ≥

h + δ∗, we first assume the contrapositive, and do the following.
(a) Solving (14) and (15) simultaneously, we obtain (hII , δ

∗

II ) in
the mechanism depicted in Fig. 10. We prove that ((hII , δ

∗

II ) <

(hIII , δ
∗

III )); (b)We then show
∫ b1

3
δ∗
II

VII (δ) dδ ≥
∫ b1

3
δ∗
III

VIII (δ) dδ = 0. But∫ b1
3

δ∗
II

VII (δ) dδ is negative for c ∈ [α1, tb2] (from Appendix D.1(3)),

which is a contradiction. We now proceed to prove our claim.
Observe that when δ1 < h + δ∗, we have a1 > 1, and the

mechanism appears as depicted (in solid lines) in Figs. B.18a and
B.18b.We now solve the problem for the parameters (hII , δ

∗

II ) in the
mechanismdepicted in Fig. 2b.We first prove that if (h, δ∗) satisfies
(15), then h increases with increase in δ∗. Solving (15) for h, we
get

h =
9b22 − 16b2c − 6δ∗(b2 + 2c) − 9(δ∗)2

6(4b2 + 3δ∗)

+

3(b2 + δ∗)
√
9b22 + 16b2c + 6δ∗(3b2 + 2c) + 9(δ∗)2

6(4b2 + 3δ∗)
.

Denoting X := 9b22 + 16b2c + 6δ∗(3b2 + 2c) + 9(δ∗)2, and
differentiating with respect to δ∗, we get

∂h
∂δ∗

=

(4b2 + 3δ∗)
(
−6(b2 + 2c + 3δ∗) + 3

√
X +

3(b2+δ∗)(9b2+6c+9δ∗)
√
X

)
6(4b2 + 3δ∗)2

−

3
(
9b22 − 16b2c − 6δ∗(b2 + 2c) − 9(δ∗)2 + 3(b2 + δ∗)

√
X
)

6(4b2 + 3δ∗)2

=

−51b22 − 72b2δ∗
− 27(δ∗)2 + 3b2

√
X +

9(4b2+3δ∗)(b2+δ∗)(3b2+2c+3δ∗)
√
X

6(4b2 + 3δ∗)2

≥ 0
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if (9(δ∗)2+24b2δ∗
+17b22)

√
X ≤ b2 ·X+3(4b2+3δ∗)(b2+δ∗)(3b2+

2c + 3δ∗). Squaring this expression on both sides and simplifying,
we have

4(4b2 + 3δ∗)2(b2 − c)(b22(9b2 + 25c) + 6b2δ∗(3b2 + 5c)

+ 9(δ∗)2(b2 + c)) ≤ 0

which clearly is true for c ≥ b2. This proves that if (h, δ∗) satisfies
(15), then h increases monotonically in δ∗.

We now claim that (hII , δ
∗

II ) < (hIII , δ
∗

III ). This is because if not,
then (i) (hII , δ

∗

II ) > (hIII , δ
∗

III ) must hold, since (h, δ∗) in both the
mechanisms satisfies (15), and hmonotonically increases in δ∗; (ii)
If (hII , δ

∗

II ) > (hIII , δ
∗

III ), then µ̄(Z) = 0 cannot be true for both the
mechanisms simultaneously (see Fig. B.18a). We have proved our
claim.

We now evaluate
∫ b1

3
δ∗
II

VII (δ) dδ −
∫ b1

3
δ∗
III

VIII (δ) dδ. From (22), we
haveV ′(δ) = −µ̄(z : z ∈ D\Z, z1−z2 = δ}. Observe fromFig. B.18b
that V ′

II (δ) < V ′

III (δ) when δ ∈ (l, δII1 ) for some l ∈ [δ∗

III , δ
III
1 ], V ′

II (δ) >

V ′

III (δ) when δ ∈ [δ∗

II , l), and V ′

II (δ) = V ′

III (δ) when δ ∈ [δII1 ,
b1
3 ] ∪ {l}.

Since we have VII (δ∗

II ) = VIII (δ∗

III ) = VII (
b1
3 ) = VIII (

b1
3 ) = 0, we

conclude that VII (δ) ≥ VIII (δ) when δ ∈ [δ∗

II ,
b1
3 ]. Further, from

V ′(δ) = −(c − 2b2) − 3(δII1 − δ) = −(c − 2b2 + 3δII2 ) + 3δ when
δ ∈ [δ∗

II , b1 − b2], we have V ′

II (δ) ≥ 0 in that interval, and thus
VII (δ) = VII (δ∗

II ) +
∫ δ

δ∗
II
V ′

II (δ̃) dδ̃ ≥ 0. Therefore,∫ b1
3

δ∗
II

VII (δ) dδ −

∫ b1
3

δ∗
III

VIII (δ) dδ

=

∫ b1
3

δ∗
III

(VII (δ) − VIII (δ)) dδ +

∫ δ∗
III

δ∗
II

VII (δ) dδ dδ ≥ 0.

This proves that δ1 ≥ h+δ∗, and also that a1 ≤ 1.We then verify
the upper bound δ1 ≤

b1
3 via Mathematica (see Appendix D.2(5)).

Step 3d: We now prove that δ2 ∈ [
2b2−c

3 ,
b2
3 ]. Suppose that

δ2 <
2b2−c

3 . Then, from V (δ) = −(c − 2b2 + 3δ2) + 3 δ2−h
δ2+δ∗ (δ + δ2)

when δ ∈ [−δ2, δ
∗
], we have V ′(−δ2) = −(c − 2b2 + 3δ2) > 0.

Also, V ′(δ∗) ≥ 0 holds since h ≤
2b2−c

3 . So we have V ′(δ) ≥ 0 when
δ ∈ [−

b2
3 , δ∗

]. This implies that V (δ∗) > 0, a contradiction. So we
have δ2 ≥

2b2−c
3 ≥ h, and thus a2 ≤ 1. The upper bound δ2 ≤

b2
3 is

verified via Mathematica (see Appendix D.2(4)).
Step 4: We now proceed to prove that the conditions in

Theorem 10 (2)–(4) are satisfied. Observe from the expressions of
V (δ) it is nonpositive when δ ∈ [−b2,

−b2
3 ] (i.e., in the interval

where q1 = 0), and nonnegative when δ ∈ [
b1
3 , b1] (i.e., in the

interval where q1 = 1). This proves the conditions of Theorem 10
(2) and 10 (4).

We now prove the conditions in Theorem 10 (3). The values of
V ′(δ) can be computed as

V ′(δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(c − 2b2 + 3δ2)

+3
δ2 − h
δ2 + δ∗

(δ + δ2) δ ∈ (−δ2, δ
∗
]

−(c − 2b2) − 3
h

δ1 − δ∗
(δ1 − δ) δ ∈ [δ∗, b1 − b2)

−(c − 2b1 + 3δ)

−3
h

δ1 − δ∗
(δ1 − δ) δ ∈ (b1 − b2, δ1)

The values of V ′(δ) when δ ∈ [−b2, δ2)∪(δ1, b1] is the same as (26).
The proof of

∫ x
−

b2
3
V (δ) dδ ≥ 0 for every x ∈ [−

b2
3 , δ∗

], is the
same as that in the proof of Theorem 14. So we proceed to prove∫ x

δ∗ V (δ) dδ ≥ 0 for every x ∈ [δ∗,
b1
3 ]. Observe that V ′(δ) is positive

when δ ∈ [δ∗, b1 −b2)∪ (δ1,
b1
3 ]. This is because (i) V (δ∗) ≥ 0 since

h ≤
2b2−c

3 , (ii) V ′(δ) increasing in the interval [δ∗, b1 − b2), and

(iii) δ1 ≤
b1
3 . We now claim that V ′(δ) ≤ 0 in some continuous

subset of [b1 − b2, δ1]. This is because (i) V ′(δ) decreases in the
interval (b1 − b2, δ1), and so when V ′(δ) = 0 at some l1 ∈ [b1 −

b2, δ1], then V ′(δ) ≤ 0 for every δ ∈ [l1, δ1); (ii) if V ′(δ) > 0 for
every δ ∈ (b1 − b2, δ1), then V (δ) ≥ 0 throughout the interval, and

thus
∫ b1

3
δ∗ V (δ) dδ = 0 cannot be true. We have proved the claim.

Combining the fact that V (δ∗) = V ( b13 ) =
∫ b1

3
δ∗ V (δ) = dδ = 0,

with V ′(δ) being nonnegative everywhere other than some con-
tinuous subset of δ ∈ (b1 − b2, δ1), it is now easy to see that∫ x

δ∗ V (δ) dδ ≥ 0 for all x ∈ [δ∗,
b1
3 ]. □

Proof of Theorem 16 (i).
Step 1:Wecompute the virtual valuation function for themech-

anism depicted in Fig. 13.

V (δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ̄(Z) +
3
2
δ2 + 2b2δ +

b22
2

δ ∈ [−b2, −δ2]

V (−δ2) − (c − 2b2 + 3δ2)(δ + δ2)

+
3
2

δ2

δ1 + δ2
(δ + δ2)2 δ ∈ [−δ2, δ1]

V (δ1) + 2b2(δ − δ1) δ ∈ [δ1, b′
]

V (b′) − b1(δ − b1 + b2)

−
3
2
((b1 − δ)2 − b22) δ ∈ [b′, b1]

where b1 − b2 is denoted as b′.
Step 2: The mechanism has three unknowns — δ1, δ2 and a1.

Since q = ∇u, a conservative field, we must have the slope of the
line separating (0, 0) and (1 − a, a) allocation regions satisfying
−

1−a
a = −

δ2
δ1
. This yields a =

δ1
δ1+δ2

.
We nowcompute the other twoparameters by equating µ̄(Z) =

0 and
∫ b1

2 −
b2
4

−
b2
3

V (δ) dδ = 0. The latter condition follows from

Theorem 10 3(c) because q1(δ) = 1− a ∈ (0, 1) for δ ∈ [−
b2
3 ,

b1
2 −

b2
4 ].

µ̄(Z) = 0 ⇒ −
3
2
δ1δ2 − c(δ1 + δ2) + b1b2 = 0. (B.7)

∫ b1
2 −

b2
4

−
b2
3

V (δ) dδ = 0

⇒

∫
−δ2

−
b2
3

V (δ) dδ +

∫ δ1

−δ2

V (δ) dδ +

∫ b1
2 −

b2
4

δ1

V (δ) dδ = 0

⇒ b2(δ22 − b22/9) +
1
2
(b32/27 − δ32) +

b22
2
(b2/3 − δ2)

− (3δ1δ2/2 + c(δ1 + δ2) − b22/2)(2b1 − b2 − 4δ1)/4

+ b2(2b1 − b2)/4 − b2δ21

− (2b2δ2 − 3δ22/2 − b22/2)(δ1 + δ2)

− (c − 2b2 + 2δ2)
(δ1 + δ2)2

2
= 0

⇒
2b32
27

+
δ1 − δ2

2
(δ1δ2 + c(δ1 + δ2)) −

b2
16

(2b1 − b2)2

−
(2b1 − b2)µ̄(Z)

4
= 0. (B.8)

The values of δ1 and δ2 can be obtained by solving (B.7) and (B.8)
simultaneously.
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Step 3:Wenow evaluate the bounds on the variables in order to
prove the existence of a meaningful solution that solves (B.7) and
(B.8). Specifically, we show that there exists a (δ1, δ2) ∈ [0, b1

2 −
b2
4 ]×[0, b2

3 ], as a simultaneous solution to (B.7) and (B.8).We show
as in Step 3 of proof of Theorem 13.

We have δ1|δ2=
b1b2−cδ2
c+3δ2/2 and δ2|δ1=

b1b2−cδ1
c+3δ1/2 from (B.7). It

is clear that δ2|δ1=x is continuous in x, and also monotonically
decreases in x. That δ2|δ1=0= b1b2/c ≥ 0 is also clear. We now
verify if δ2|δ1=

b1
2 −

b2
4
≤

b2
3 . Observe that c ≥ 3b2/2 from the

statement of the theorem, since c = 3b2/2 makes the left-hand
side of (19) positive. We use c ≥ 3b2/2 crucially in the verification
process.

b1b2 − c(b1/2 − b2/4)
c + 3b1/4 − 3b2/8

≤
b1b2 − 3b2(b1/2 − b2/4)/2
3b2/2 + 3b1/4 − 3b2/8

=
b1b2/4 + 3b22/8
9b2/8 + 3b1/4

=
b2
3

,

where the inequality occurs because c ≥ 3b2/2 from the statement
of the theorem.

We now substitute ( b12 −
b2
4 , δ2|δ1=

b1
2 −

b2
4
) on the left-hand side

of (B.8), to obtain

−

(
(6b1 + b2)2

864(6b1 − 3b2 + 8c)2

)
(72b21b2 + 144b1b22 − 90b32 + (−36b21 + 84b1b2 + 399b22)c

−(96b1 + 208b2)c2)

which is nonnegative for all c ≥ β . We now substitute (δ1|δ2=0, 0)
to obtain
1

432
b2
c
(216b21b2 − 108b21c + 108b1b2c + 5b22c) ≥ 0

for all c ≤
216b21b2

108b21−108b1b2−5b22
. This shows that the left-hand side of

(B.8) is nonnegative at the entry points of the curve (δ1|δ2 , δ2) in
the desired rectangle.

We now substitute (0, δ2|δ1=0), and obtain

1
432

b2
c
(108b1b2c + 5b22c − 216b21b2 − 108b21c) ≤ 0

because (i) 108b1c(b2 − b1) ≤ 0 for b1 ≥ b2, and (ii) 5b22c ≤

216b21b2 for b1 ≥ 3b2/2 and c ≤ 243b2/38. We now substitute
(δ1|δ2=

b2
3
,

b2
3 ), and obtain

b2(6b1 + b2)2(5b22 + 12b2c − 12c2)
432(b2 + 2c)2

≤ 0

for c ≥ 3b2/2. Recall that c ≥ 3b2/2 holds from the theorem
statement. This shows that the left-hand side of (B.8) is nonpositive
at the exit points of the curve (δ1|δ2 , δ2) in the desired rectangle.

We have thus shown that there exists (δ1, δ2) ∈ [0, b1
2 −

b2
4 ] ×

[0, b2
3 ] that solves (B.7) and (B.8) simultaneously for all values of

(c, b1, b2) on the statement of the theorem.
Step 4: We now proceed to prove that the conditions in

Theorem 10 (2)–(4) are satisfied. Observe that V ′(δ) changes its
sign from negative to positive only at δ = −

2b2
3 in the interval

where q1 = 0, and from positive to negative only at δ =

max( 2b13 , b1 − b2) in the interval where q1 = 1. The proof of
parts (2) and (4) now traces the same steps as in Theorem 13.
Similarly, the proof that

∫ x
−

b2
3
V (δ) dδ ≥ 0 holds for every x ∈

[−
b2
3 ,

b1
2 −

b2
4 ], is the same as in Theorem 14. This completes the

proof of optimality of the mechanism in Fig. 2f.

At c =
216b21b2

108b21−108b1b2−5b22
, we obtain δ2 = 0, when we solve

(B.7) and (B.8) simultaneously. A transition thus occurs from the
structure depicted in Fig. 2f to that in Fig. 2g. We now show
that the optimal mechanism as depicted in Fig. 15, when c ≥

216b21b2
108b21−108b1b2−5b22

.

Step 1: We first consider the zero allocation region to be Z =

([c, c +
b1b2
c ], c), and compute the virtual valuation function as

follows.

V (δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ̄(Z) +
3
2
δ2 + 2b2δ +

b22
2

δ ∈ [−b2, 0]

V (0) − (c − 2b2)δ δ ∈ [0,
b1b2
c

]

V (
b1b2
c

) + 2b2(δ −
b1b2
c

) δ ∈ [
b1b2
c

, b′
]

V (b′) − b1(δ − b1 + b2)

−
3
2
((b1 − δ)2 − b22) δ ∈ [b′, b2]

where b1 − b2 is denoted by b′. Observe that the zero allocation
region only consists of a portion of the bottom boundary. So when
we modify q(z) to be (0, 1) instead of (0, 0) for every z ∈ Z ,
the utility u(z) remains the same for every z ∈ D. The expected
revenue, Ez∼f [z · q(z) − u(z)], also remains unchanged, because∫
Z f (z) dz = 0. So we continue our analysis of the mechanism in

Fig. 2g, assuming the zero allocation region Z to be non-empty.
The mechanism does not have any unknowns to compute. So

steps 2 and 3 are not necessary. We move straightaway to step 4.
Step 4: We now prove that the conditions in Theorem 10 (2)

and 10 (4) are satisfied. Since V ′(δ) changes sign from positive
to negative only at δ = max( 2b13 , b1 − b2) in the interval where
q1 = 1, the proof for Theorem 10 (4) traces the same steps as
in Theorem 13. But V ′(δ) changes sign at three values of δ in the
interval where q1 = 0. So proving the other condition needs more
work.

We have V (−b2) = V (− b2
3 ) = 0, and V (δ) ≤ 0 when δ ∈

[−b2, −
b2
3 ]. We now evaluate

∫ b1
2 −

b2
4

−
b2
3

V (δ) dδ.

∫ b1
2 −

b2
4

−
b2
3

V (δ) dδ =
2
27

b32 +
b21b

2
2

2c
−

1
16

b2(2b1 − b2)2 ≤ 0 (B.9)

when c ≥
216b21b2

108b21−108b1b2−5b22
. So we have

∫ b1
2 −

b2
4

−b2
V (δ) dδ ≤ 0.

Observe that V (δ) is negative when δ ∈ [−b2, −
b2
3 ], posi-

tive when δ ∈ [−
b2
3 ,

b22
2(c−2b2)

], and negative again when δ ∈

[
b22

2(c−2b2)
,

b1
2 −

b2
4 ]. So the integral

∫ x
−b2

V (δ) dδ thus attains its
minimum either at −

b2
3 or at b1

2 −
b2
4 . But from (B.9), we have∫ b1

2 −
b2
4

−
b2
3

V (δ) dδ ≤ 0, and so the minimum cannot occur at −
b2
3 .

Therefore,
∫ x

−b2
V (δ) dδ ≥

∫ b1
2 −

b2
4

−
b2
3

V (δ) dδ holds for all x ∈ [−b2,
b1
2 −

b2
4 ]. Hence the result. □

Proof of Theorem 16(ii). Consider case (ii), where b1 ∈

[b2, 3b2/2]. The values of V (δ) and the expression for µ̄(Z) = 0
are the same as in the proof of Theorem 16(i). We thus skip step 1.

Step 2: We now compute the expression for −
∫ b1

3

−
b2
3

V (δ) dδ

= 0.

−

∫ b1
3

−
b2
3

V (δ) dδ = 0



D. Thirumulanathan, R. Sundaresan and Y. Narahari / Journal of Mathematical Economics 82 (2019) 31–60 55

⇒ −

∫
−δ2

−
b2
3

V (δ) dδ −

∫ δ1

−δ2

V (δ) dδ −

∫ b1−b2

δ1

V (δ) dδ

−

∫ b1
3

b1−b2

V (δ) dδ = 0

⇒
2
27

(b31 − b32) −
δ1 − δ2

2

(
b1b2 −

δ1δ2

2

)
−

(
b1 − b2 −

δ1 − δ2

2

)
µ̄(Z) = 0. (B.10)

The values of (δ1, δ2) can be obtained by solving (B.7) and (B.10)
simultaneously.

Step 3: We evaluate the bounds on the variables in order to
prove the existence of a meaningful solution that solves (B.7) and
(B.10). Specifically, we show that there exists a (δ1, δ2) ∈ [0, b1

3 ] ×

[0, b2
3 ], as a simultaneous solution to (B.7) and (B.10). Again, we

show this as in Step 3 of proof of Theorem 13.
We have δ1|δ2=

b1b2−cδ2
c+3δ2/2 and δ2|δ1=

b1b2−cδ1
c+3δ1/2 from (B.7). It

is clear that δ2|δ1=x is continuous in x, and also monotonically
decreases in x. That δ2|δ1=0= b1b2/c ≥ 0 is also clear. We now
verify if δ2|δ1=

b1
3
≤

b2
3 for all c ≥ α2.

We first observe from Mathematica that α2 ≥ 1.36b2 + 2(t −

1.36)(b1−b2), with t = 3(37+3
√
465)/176 (see Appendix D.2(7)).

We now show that 1.36b2 + 2(t − 1.36)(b1 − b2) ≥
5
2

b1b2
b1+b2

.
This is same as showing that 4(t − 1.36)b21 − 2.28b1b2 + (2.72 −

4(t − 1.36))b22 ≥ 0, which is clearly true since (i) the roots of this
quadratic expression are imaginary, and (ii) the coefficients of b21
term and b22 term are positive. We thus verify if δ2|δ1=

b1
3
≤

b2
3 for

all c ≥
5
2

b1b2
b1+b2

.

b1b2 − cb1/3
c + b1/2

≤
b1b2 − 5b1(b1b2)/(6(b1 + b2))
5b1b2/(2(b1 + b2)) + b1/2

=
b21b2/6 + b1b22
3b1b2 + b21/2

=
b2
3

,

where the inequality occurs because of c ≥
5
2

b1b2
b1+b2

.
We substitute ( b13 , δ2|δ1=

b1
3
) on the left-hand side of (B.10), to

obtain
4b51 − 16b1b32c − 16b32c

2
+ b41(−6b2 + 15c)

54(b1 + 2c)2

+
12b31(3b

2
2 − 3b2c + c2) − 4b21b2(b

2
2 − 27b2c + 18c2)

54(b1 + 2c)2

We now verify if this expression is nonpositive for every c ≥ α2,
b1 ∈ [b2, 3b2/2]. (Recall thatα2 ≥ 1.36b2+2(t−1.36)(b1−b2)).We
now prove that the expression is nonpositive when c = 1.36b2 +

2(t − 1.36)(b1 − b2), b1 ∈ [b2, 3b2/2], and that it is decreasing in
c. Substituting c = 1.36b2 + 2(t − 1.36)(b1 − b2), we have

(21.8931)b51 − (52.8447)b41b2 + (33.1421)b31b
2
2

+(14.2829)b21b
3
2 − (24.4661)b1b42 − (6.01705)b52 ≤ 0

for b1 ∈ [b2, 3b2/2]. Differentiating the numerator with respect to
c , we have

− 16b1b32 − 32b32c + 15b41 − 36b31b2 + 108b21b2(b2 − c)

+ 24b21c(b1 − 3b2/2) ≤ 0

for every c ≥ b2, b1 ∈ [b2, 3b2/2].We now substitute (δ1|δ2=0, 0) in

(B.10) to obtain 2/27(b31 − b32) − b21b
2
2/(2c) ≤ 0 when c ≤

27b21b
2
2

4(b31−b32)
.

This shows that the left-hand side of (B.10) is nonpositive at the
entry points of the curve (δ1|δ2 , δ2) in the desired rectangle.

When δ1 = 0, we have δ2 = b1b2/c , and thus substituting
(0, δ2|δ1=0) on the left-hand side of (B.10), we get 2(b31 − b32)/27 +

(b1b2)2/(2c) ≥ 0. We now substitute (δ1|δ2=
b2
3
,

b2
3 ), to obtain

4b31(b2 + 2c)2 − 36b21b
2
2(b2 + 3c) + 6b1b22(b

2
2 + 6b2c + 12c2)

54(b − 2 + 2c)2

−
b32(4b

2
2 + 15b2c + 12c2)
54(b2 + 2c)2

We now verify if this expression is nonnegative for every c ≥ α2,
b1 ∈ [b2, 3b2/2].We verify this for c ≥ 1.36b2+2(t−1.36)(b1−b2),
and prove that it is increasing in c . Substituting c = 1.36b2 +2(t −
1.36)(b1 − b2), we have

(8.92237)b51 + (26.6023)b41b2 − (20.6703)b31b
2
2

−(16.0947)b21b
3
2 + (32.9614)b1b42 − (17.7114)b52 ≥ 0

for every b1 ≥ b2. Differentiating the numerator with respect to c ,
we get

16b31(b2 + 2c) + 36b1b32 − 15b42 + 108b1b22(c − b1)

+ 24b22c(3b1/2 − b2) ≥ 0

when c ≥ b1 ≥ b2. This shows that the left-hand side of (B.10) is
nonnegative at the exit points of the curve (δ1|δ2 , δ2) in the desired
rectangle.

We have thus shown that there exists (δ1, δ2) ∈ [0, b1
3 ] ×

[0, b2
3 ] that solves (B.7) and (B.10) simultaneously for all values of

(c, b1, b2) in the statement of the theorem.
Step 4: We now prove the conditions of Theorem 10(b)–(d)

are satisfied. Observe that V ′(δ) changes its sign from negative to
positive only at δ = −

2b2
3 in the interval where q1 = 0, and

from positive to negative only at δ =
2b1
3 in the interval where

q1 = 1. The proof of parts (2) and (4) now traces the same steps as
in Theorem 13.

It only remains to prove that
∫ x

−
b2
3
V (δ) dδ ≥ 0 holds for

every x ∈ [−
b2
3 ,

b1
3 ]. We consider two cases: (a) c ≥ 2b2, (b)

c ∈ [α2, 2b2]. Consider case (a). We have V ′(δ) ≥ 0 when δ ∈

[−
b2
3 , −δ2], V ′(δ) ≤ 0 when δ ∈ [−δ2, δ1] (since c ≥ 2b2), and

V ′(δ) ≥ 0 when δ ∈ [δ1,
b1
3 ]. We also have V (− b2

3 ) = V ( b13 ) = 0.
It follows that V (δ) ≥ 0 when δ ∈ [−

b2
3 ,

b1
3 ], and

∫ x
−

b2
3
V (δ) dδ ≥∫ b1

3

−
b2
3

V (δ) dδ ≥ 0 for every x ∈ [−
b2
3 ,

b1
3 ].

In case (b), we prove
∫ x

−
b2
3
V (δ) dδ ≥ 0 holds for every x ∈

[−
b2
3 ,

b1
3 ], by comparing the mechanism in Fig. 2d with that in

Fig. 2c. We first prove that (δIV1 , δIV2 ) obtained by solving (B.7)
and (B.10) in the mechanism depicted in Fig. 2d, is at most the
value of (δIII1 , δIII2 ) values obtained in Fig. 2c. We then argue that∫ x

−
b2
3
(VIV (δ) − VIII (δ)) ≥ 0 for every x ∈ [

b2
3 ,

b1
3 ]. Since we

know that condition 3d in Theorem 10 holds for the mechanism in
Fig. 2c, the proof is complete.

We now prove that (δIV1 , δIV2 ) < (δIII1 , δIII2 ). Suppose not. We have
two cases: (i) (δIV1 , δIV2 ) > (δIII1 , δIII2 ), (ii) One of (δIV1 , δIV2 ), say δIV2 ,
is greater than δIII2 . From Mathematica, we have a1 + a2 < 1 when
c ∈ [α2, 2b2) (seeAppendixD.2(6)). Thus themechanismsdepicted
in Figs. 2b and 2d appear as in Fig. B.19a for case (i), and as in
Fig. B.19b for case (ii).

Consider case (i).Wehave µ̄III (Z) = µ̄IV (Z)−a negative number
> µ̄III (Z). So µ̄(Z) = 0 cannot hold simultaneously for both
the mechanisms, a contradiction. Consider case (ii). We then have
V ′

III (δ) > V ′

IV (δ) for δ ∈ (−δIV2 , l1) for some l1 ∈ [−δIII2 , δIV1 ],
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Fig. B.19. The mechanisms in Figs. 2c and 2d superimposed on each other, when (a) (δIII1 , δIII2 ) < (δIV1 , δIV2 ); (b) δIII1 > δIV1 , and δIII2 < δIV2 ; (c) (δIII1 , δIII2 ) > (δIV1 , δIV2 ). The
mechanism in Fig. 2c is denoted by dotted lines, and that in Fig. 2d by solid lines.

V ′

III (δ) < V ′

IV (δ) for δ ∈ (l1, δIII1 ), and V ′

III (δ) = V ′

III (δ) for δ ∈

[−
b2
3 , −δIV2 ] ∪ {l1} ∪ [δIII1 ,

b1
3 ]. We also have VIII (−

b2
3 ) = VIII (

b1
3 ) =

VIV (−
b2
3 ) = VIV (

b1
3 ) = 0. So VIII (δ) − VIV (δ) = VIII (−

b2
3 ) −

VIV (−
b2
3 )+

∫ δ

−
b2
3
(V ′

III (δ̃)− V ′

IV (δ̃)) dδ̃ > 0 for all δ ∈ (− b2
3 ,

b1
3 ). Thus∫ b1

3

−
b2
3

(VIII (δ) − VIV (δ)) dδ > 0, a contradiction. We have proved our

claim.
We thus have (δIII1 , δIII2 ) > (δIV1 , δIV2 ), and themechanisms appear

as in Fig. B.19c. We have V ′

III (δ) < V ′

IV (δ) for δ ∈ (−δIII2 , l1)∪ (l2, δIII1 )
for some l1 ∈ [−δIV2 , δIV1 ] and l2 ∈ [l1, δIV1 ], V ′

III (δ) > V ′

IV (δ) for δ ∈

(l1, l2), and V ′

III (δ) = V ′

III (δ) for δ ∈ [−
b2
3 , −δIII2 ] ∪ {l1, l2} ∪ [δIII1 ,

b1
3 ].

We also have VIII (−
b2
3 ) = VIII (

b1
3 ) = VIV (−

b2
3 ) = VIV (

b1
3 ) =∫ b1

3

−
b2
3

VIII (δ) dδ =
∫ b1

3

−
b2
3

VIV (δ) dδ = 0. We now have a series of

observations.

• VIV (δ) − VIII (δ) = VIV (−
b2
3 ) − VIII (−

b2
3 ) +

∫ δ

−
b2
3
(V ′

IV (δ̃) −

V ′

III (δ̃)) dδ̃ ≥ 0 when δ ∈ [−
b2
3 , l1].

• VIV (δ)−VIII (δ) = VIV (
b1
3 )−VIII (

b1
3 )−

∫ b1
3

δ (V ′

IV (δ̃)−V ′

III (δ̃)) dδ̃ ≤

0 when δ ∈ [l2,
b1
3 ].

• By a similar argument, it is easy to see that VIV (δ) − VIII (δ) is
nonnegative when δ ∈ [l1,m] for some m ∈ [l1, l2], and is
nonpositive when δ ∈ [m, l2]. We thus have VIV (δ) ≥ VIII (δ)
when δ ∈ [−

b2
3 ,m], and VIV (δ) ≤ VIII (δ) when δ ∈ [m,

b1
3 ].

•
∫ x

−
b2
3
(VIV (δ) − VIII (δ)) dδ ≥ 0 when x ∈ [−

b2
3 ,m].

•
∫ x

−
b2
3
(VIV (δ) − VIII (δ)) dδ = −

∫ b1
3

x (VIV (δ) − VIII (δ)) dδ ≥ 0 for

any x ∈ [m,
b1
3 ].

• Notice that
∫ x

−
b2
3
VIII (δ) dδ ≥ 0 holds for any x ∈ [−

b2
3 ,

b1
3 ],

and thus
∫ x

−
b2
3
VIV (δ) dδ ≥ 0 now follows.

This completes the proof of optimality of the mechanism depicted
in 2d.

For the proof of optimality of the mechanism depicted in 2e
when c ≥

27b21b
2
2

4(b31−b32)
, we note that the proof is exactly the same as

in the proof of Theorem 16(i), except for the term
∫ b1

3

−
b2
3

V (δ) dδ =

2
27 (b

3
2 − b31) +

b21b
2
2

2c . The expression clearly is negative when c ≥

27b21b
2
2

4(b31−b32)
. □

Proof of Theorem 17.We fix c1 − c2 = d. Observe that the domain
of the functions (q1, t) is the interval [d − b2, d − b1]. But it can
be verified that all the results hold even for a shifted version of the
domain. So we redefine δ = z1 − z2 − d, and retain the domain to
be [−b2, b1].

Step 1:Wecompute the virtual valuation function for themech-
anism depicted in Fig. 9.

V (δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ̄(Z) +
3
2
δ2 + 2b2δ

+
b22
2

+ d(δ + b2) δ ∈ [−b2, −δ2]

V (δ2) − (c2 − 2b2 + 3δ2)(δ + δ2) δ ∈ [−δ2, δ
∗
]

V (δ∗) − (c2 − 2b2)(δ − δ∗)

+
3
2
((δ1 − δ)2 − δ22) δ ∈ [δ∗, b1 − b2]

V (b1 − b2) − (c1 − 2b1 + 3δ1)
(δ − b1 + b2) δ ∈ [b1 − b2, δ1]

−
3
2
δ2 + 2b1δ −

b21
2

− d(δ − b1) δ ∈ [δ1, b1]

Step 2: The mechanism has three unknowns – δ∗, δ1, and δ2.
Observe that the line between the points (c1 +b2 +δ∗, c2 +b2) and
(c1+δ∗, c2) passes through (c1+δ1, c2+δ2). Sowehave δ∗

= δ1−δ2.
We now proceed to compute δ1 and δ2. We do so by equating

µ̄(Z) = 0 and V (δ∗) = 0. The latter follows from Theorem 10
because q1 = 0 for δ ∈ [−b2, δ∗

].

µ̄(Z) = 0 ⇒ −3δ1δ2 − c2δ1 − c1δ2 + b1b2 = 0. (B.11)

V (δ∗) = 0 ⇒ −
3
2
δ22 + 2b2δ2 −

b22
2

− d(b2 − δ2)

+ (c2 − 2b2 + 3δ2)δ1 = 0. (B.12)

The values of δ1 and δ2 can be computed by solving (B.11) and
(B.12) simultaneously.

Step 3: We now evaluate the bounds on δ1 and δ2 in order to
prove the existence of a meaningful solution that solves (B.11)
and (B.12) simultaneously. Specifically, we show that there exists a
(δ1, δ2) ∈ [

b1
2 −

c1
3 +

c1c2
6b2

,
2b1−c1

3 ]×[
b2+2d

3 ,
2b2−c2

3 ] as a simultaneous

solution to (B.11) and (B.12). To show this, we do the following.

• We first show that there exists a (δ1, δ2) ∈ [
b1
2 −

c1
3 +

c1c2
6b2

,
2b1−c1

3 ] × [
b2+2d

3 ,
2b2−c2

3 ] satisfying (B.11). We do this by
showing that (a) δ1|δ2=x is continuous in x, and (b) δ1|δ2=

2b2−c2
3

=
b1
2 −

c1
3 −

c1c2
6b2

. We further show that in addition to conti-
nuity, δ1|δ2=x is also monotone; it decreases as x increases.

• It now suffices to show that the entry and the exit points of
the curve (δ1|δ2=x, x) in the rectangle [

b1
2 −

c1
3 +

c1c2
6b2

,
2b1−c1

3 ]×

[
b2+2d

3 ,
2b2−c2

3 ] changes sign when substituted on the left-
hand side of (21). The entry point clearly is ( b12 −

c1
3 +

c1c2
6b2

,
2b2−c2

3 ). The exit point is either ( 2b1−c1
3 , δ2|δ1=

2b1−c1
3

) or

(δ1|δ2=
b2+2d

3
,

b2+2d
3 ). So we show that (a) substituting ( b12 −

c1
3 +

c1c2
6b2

,
2b2−c2

3 ) on left-hand side of (B.12),makes the expres-
sion nonnegative, and (b) substituting ( 2b1−c1

3 , δ2|δ1=
2b1−c1

3
)
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or (δ1|δ2=
b2+2d

3
,

b2+2d
3 ) on left-hand side of (B.12), makes the

expression nonpositive.

We now fill in the details. We have δ1|δ2=
b1b2−c1δ2
3δ2+c2

and δ2|δ1=
b1b2−c2δ1
3δ1+c1

from (20). It is clear that δ1|δ2=x is continuous in x, and also
monotonically decreases in x. That δ1|δ2=

2b2−c2
3

=
b1
2 −

c1
3 −

c1c2
6b2

can

easily be computed by substituting δ2 =
2b2−c2

3 .

We now consider the points (δ1|δ2=
b2+2d

3
,

b2+2d
3 ) and

(δ1|δ2=
2b2−c2

3
,

2b2−c2
3 ). Substituting δ1 =

b1b2−c1δ2
3δ2+c2

from (B.11) in
(B.12), we obtain

−9δ32 − δ22(9c2 − 12b2)

−δ2(2c22 − 10b2c2 + 2b2c1 + 3b22 − 6b1b2)

−b22c2 + 2b1b2c2 − 4b1b22 − 2b2c2(c1 − c2) = 0. (B.13)

When δ2 =
2b2−c2

3 , the left-hand side of (B.13) equals 2
3b2(b2 +

c2)(b2 − 2c1 + c2) ≥ 0 for 2c1 − c2 ≤ b2. Thus the expression is
nonnegative at the entry point.

When δ2 =
b2+2d

3 , the left-hand side of (B.13) equals−
2
3 (3b1b2−

c1(b2 + 2d))(b2 − 2c1 + c2) ≤ 0 for c1 ≤ b2, d ≤ b2/2, and
2c1 − c2 ≤ b2. Thus the expression is nonpositive at the exit point
(δ1|δ2=

b2+2d
3

,
2b2+2d

3 ).

We now consider the point ( 2b1−c1
3 , δ2|δ1=

2b1−c1
3

). Substituting

δ2 =
b1b2−c2δ1
3δ1+c1

from (B.11) in (B.12), and obtain

−36b2δ31 + (9b2(2b1 − b2) + 6b2(c2 − 7c1) + 3c22 )δ
2
1

+(12b1b2(b2 + c1) − 2b2c1(3b2 + 8c1) + 8b2c1c2 + 2c1c22 )δ1

−3b21b
2
2 + 4b1b22c1 + 2b1b2c21 − b22c

2
1 − 2b2c31 − 2b1b2c1c2

+2b2c21c2 = 0. (B.14)

When δ1 =
2b1−c1

3 , the left-hand side of (B.14) equals 1
3 (−8b31b2 +

2b1b2c1c2−c21c
2
2+b21(3b

2
2−8b2c1+8b2c2+4c22 )).Wenowprove that

this expression is nonpositive for all c1, c2 under consideration.

−8b31b2 + 2b1b2c1c2 − c21c
2
2 + b21(3b

2
2 − 8b2(c1 − c2) + 4c22 )

≤ −8b31b2 + 2b1b2c1c2 − c21c
2
2 + b21(3b

2
2 + 4c22 )

≤ −8b31b2 + 4b21b
2
2 + 4b21c

2
2 ≤ −8b21b2(b1 − b2) ≤ 0

where the first inequality follows from c1 ≥ c2; the second
inequality occurs because the expression is maximized when c1 =
b1b2
c2

; the third inequality follows because when c2 ∈ [0, b2], the
expression ismaximized at c2 = b2; and the final inequality occurs
since b1 ≥ b2. Thus the expression is nonpositive at the exit point
( 2b1−c1

3 , δ2|δ1=
2b1−c1

3
).

We have thus shown that there exists a (δ1, δ2) ∈ [
b1
2 −

c1
3 +

c1c2
6b2

,
2b1−c1

3 ] × [
b2+2d

3 ,
2b2−c2

3 ] as a simultaneous solution to (B.11)
and (B.12), when the values of (c1, c2, b1, b2) satisfy the conditions
in the statement of the theorem.

Step 4: We now proceed to prove parts (c) and (d) in
Theorem 10(2) and 10(4). We first compute V ′(δ) for almost every
δ ∈ [−b2, b1].

V ′(δ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3δ + 2b2 + d δ ∈ (−b2, −δ2)
−(c2 − 2b2 + 3δ2) δ ∈ (−δ2, δ

∗
]

−(c2 − 2b2) − 3(δ1 − δ) δ ∈ [δ∗, b1 − b2)
−(c1 − 2b1 + 3δ1) δ ∈ (b1 − b2, δ1)
−3δ + 2b1 − d δ ∈ (δ1, b1)

Observe that V ′(δ) is negative when δ ∈ [−b2, −
2b2+d

3 ], and
positive when δ ∈ [−

2b2+d
3 , −δ2] (follows because δ2 ≤

2b2−c2
3 ).

We also have V (−b2) = V (δ∗) = 0. So V (δ) = V (−b2) +∫ δ

−b2
V ′(δ̃) dδ̃ ≤ 0 for all δ ∈ [−b2, δ∗

], and hence
∫ δ∗

−b2
V (δ) dδ ≤ 0,

and
∫ x

−b2
V (δ) dδ ≥

∫ δ∗

−b2
V (δ) dδ for all x ∈ [−b2, δ∗

].
We now claim that V ′(δ) is positive when δ ∈ [δ∗,

2b1−d
3 ], and

negative when δ ∈ [
2b1−d

3 , b1]. Observe that V ′(δ) is continuous at
δ = δ∗, and that it increases in the interval [δ∗, b1 −b2]. So V ′(δ) ≥

0 when δ ∈ [δ∗, b1 − b2]. Also, V ′(δ) ≥ 0 when δ ∈ [b1 − b2, δ1]
because δ1 ≤

2b1−c1
3 . That V ′(δ) is positive when δ ∈ [δ1,

2b1−d
3 ],

and negative when δ ∈ [
2b1−d

3 , b1] is obvious. We have proved our
claim.

Since we also have V (b1) = 0 = V (δ∗), it follows that
V (δ) = V (δ∗) +

∫ δ

δ∗ V ′(δ̃) dδ̃ ≥ 0 for all δ ∈ [δ∗, b1]. So we
have

∫ b1
δ∗ V (δ) dδ ≥ 0 and

∫ x
δ∗ V (δ) dδ ≤

∫ b1
δ∗ V (δ) dδ for all x ∈

[δ∗, b1]. □

Appendix C. The weak duality result

In this section, we show the weak duality relationship between
(4) and (5). Take the primal problem

max
u(z)−u(z′)≤∥z−z′∥∞

u cont, conv, inc

∫
D
u(z) dµ̄(z)

and rewrite it as

max
(u cont, conv, inc)

min
γ≥0

∫
D
u(z) dµ̄(z)

+

∫
D×D

(∥z − z ′
∥∞ − u(z) + u(z ′)) dγ (z, z ′).

We can do this because if u(z) − u(z ′) > ∥z − z ′
∥∞, then the

minimizer can choose an adverse γ to make the second integral
approach −∞. The maximizer would not want this to happen and
would hence choose u to ensure that u(z) − u(z ′) ≤ ∥z − z ′

∥∞ for
all pairs z, z ′ in D. The quantity dγ (z, z ′) is then a pricemeasure for
violating the constraint u(z) − u(z ′) ≤ ∥z − z ′

∥∞.
Let us now write the dual:

min
γ≥0

max
(u cont, conv, inc)

∫
D
u(z) dµ̄(z)

+

∫
D×D

(∥z − z ′
∥∞ − u(z) + u(z ′)) dγ (z, z ′).

Define γ1(z) =
∫
D γ (z, dz ′) and γ2(z ′) =

∫
D γ (dz, z ′). Now rewrite

the dual as

min
γ≥0

max
(u cont, conv, inc)

∫
D
u(z) d(µ̄(z) − (γ1(z) − γ2(z)))

+

∫
D×D

∥z − z ′
∥∞ dγ (z, z ′)

and recognize it to be

min
γ :γ1−γ2⪰cvxµ̄

∫
D×D

∥z − z ′
∥∞ dγ (z, z ′).

This is because if γ satisfied γ1−γ2 ⪰̸cvx µ̄, then themaximizer can
choose an adversarial uwith

∫
D u(z) d(µ̄(z) − (γ1(z) − γ2(z))) > 0,

and drive the first integral to ∞.
This establishesweak duality and provides uswith some under-

standing of how the dual arises and why γ may be interpreted as
prices for violating the primal constraint.
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Appendix D. Proofs using mathematica

D.1. Expressions used in Theorem 14

1. We first find the expression for h that solves (14) and (15)
simultaneously.
Mathematica Input:
δ∗

= (b1b2 − b22/2 − 3h2/2 − ch)/(2b2);
Solve[27(c + h+ δ∗)(b2 + δ∗)2 − 4(4b2 + 3δ∗)(3/2(h+ δ∗)+
c)2 == 0, h]
Mathematica Output:
{{h → Root[−72b21b

3
2 − 144b1b42 + 90b52 + 36b21b

2
2c −

84b1b32c − 399b42c + 96b1b22c
2

+ 208b32c
2

+ (108b21b
2
2 +

36b1b32−477b42+432b1b22c+768b32c−72b1b2c2+84b22c
2
−

96b2c3)#1 + (432b1b22 + 684b32 − 324b1b2c + 90b22c −

504b2c2 + 36c3)#12
+ (−324b1b2 − 54b22 − 864b2c +

216c2)#13
+ (−486b2 + 405c)#14

+ 243#15 &, 1]}
(all five roots)}
In this subsection, we verify (i) δ2 ≤ b2/3 when b1 ≥ b2,
c ∈ [b2, 2b2], (ii) the left-hand side of (16) is nonnegative
when b1 ∈ [b2, 3b2/2], c ∈ [b2, α1], and (iii) 2(t − 1)(b1 −

b2) + b2 ≥ α1, where t = 3(37 + 3
√
465)/176. We will use

bullet (1) above.
2. We now proceed to verify if δ2 ≤ b2/3. From (32), we

have δ2 =
b1b2−(3h/2+c)(h+δ∗)

3/2(h+δ∗)+c . Observe that this is in terms
of (h, δ∗) that are obtained by solving (14) and (15). We thus
initialize the values of h and δ∗ using expressions frombullet
(1) above, and then find the values of (c, b1, b2) for which
δ2 ≤

b2
3 holds.

Mathematica Input:
h = Root[−72b21b

3
2 − 144b1b42 + 90b52 + 36b21b

2
2c −

84b1b32c − 399b42c + 96b1b22c
2

+ 208b32c
2

+ (108b21b
2
2 +

36b1b32−477b42+432b1b22c+768b32c−72b1b2c2+84b22c
2
−

96b2c3)#1 + (432b1b22 + 684b32 − 324b1b2c + 90b22c −

504b2c2 + 36c3)#12
+ (−324b1b2 − 54b22 − 864b2c +

216c2)#13
+ (−486b2 + 405c)#14

+ 243#15 &, 3];
δ∗

= (b1b2 − 3/2h2
− ch − b22/2)/(2b2); δ2 = b1b2(3h/2 +

c)(h + δ∗)/(3(h + δ∗)/2 + c);
Reduce[δ2 ≤ b2/3&& 0 ≤ b2 ≤ b1 && b2 ≤ c ≤ 2b2,
{b2, b1, c}]
Mathematica Output:
b2 > 0&& b1 ≥ b2 && b2 ≤ c ≤ 2b2
The output indicates that δ2 ≤ b2/3 holds for every b1 ≥ b2,
c ∈ [b2, 2b2].

3. We then find the values of c for which the left-hand side of
(16) is nonnegative.
Mathematica Input:
Reduce[−2b31/27 − b2(δ∗)2 + b2δ∗(b1 − b2/2) + (c + h)
h2/2 ≥ 0&& 0 ≤ b2 ≤ b1 ≤ 3b2/2&& b2 ≤ c ≤

tb2, {b2, b1, c}]
Mathematica Output:
b2 > 0&& b2 ≤ b1 ≤ 1.5b2 && b2 ≤ c ≤ Root[fc−II (c) &, 2]
Here, fc−II (c) is a polynomial of degree 12.We have not writ-
ten it here since it is too long. Let α1 = Root[fc−II (c) &, 2].
Then this proves that the left-hand side of (16) is nonnega-
tive for every c ∈ [b2, α1].

4. To prove that α1 ≤ 2(t − 1)(b1 − b2) + b2, with t = 3(37 +

3
√
465)/176, we again find the values of c for which the

left-hand side of (16) is nonnegative, but with c restricted
to c ∈ [b2, 2(t − 1)(b1 − b2) + b2].

Mathematica Input:
t =

3
176 (37 + 3

√
465); Reduce[−2b31/27 − b2(δ∗)2

+ b2δ∗(b1 − b2/2) + (c + h)h2/2 ≥ 0&& 0 ≤ b2 ≤ b1 ≤

3b2/2&& b2 ≤ c ≤ 2(t − 1)(b1 − b2) + b2, {b2, b1, c}]
Mathematica Output:
b2 > 0&& b2 ≤ b1 ≤ 1.5b2 && b2 ≤ c ≤ Root[fc−II (c) &, 2]
This proves that α ≤ 2(t − 1)(b1 − b2) + b2. This completes
all the proofs in Theorem 14.

D.2. Expressions used in Theorem 15

1. We first prove that the left-hand side of (15) is nonnegative
when (h, δ∗) = (0, δ∗

|h=0).
Mathematica Input:
δ∗

=
b1
2 −

b2
4 −

(3b2−2b1)
√
3b2c(8b1−3b2)(2b2−c)

(36b2(2b2−c)) ;

t = 3(37 + 3
√
465)/176; Reduce[27b22c − 16b2c2

+ (27b22 + 6b2c − 12c2)δ∗
+ (18b2 − 9c)(δ∗)2 ≥ 0&& 0 ≤

b2 ≤ b1 ≤ 1.5b2 && b2 ≤ c ≤ 2(t − 1.4b2)(b1 − b2) +

1.4b2, {b2, b1, c}]
Mathematica Output:
b2 > 0&& b2 ≤ b1 ≤ 1.5b2 && b2 ≤ c ≤ 0.66676b1 +

0.73324b2
2. We now prove that the left-hand side of (15) is nonnegative

when (h, δ∗) = (h|δ∗=b1−b2 , b1 − b2).
Mathematica Input:

h =
9b22−4c(b1+3b2)+3b2

√
9b22+4c(b1+3b2)

6(b1+3b2)
;

Reduce[(27b21(b1 − b2 + c + h) − (3b1 + b2)(3b1 − 3b2
+ 2c + 3h)2) ≥ 0&& 0 ≤ b2 ≤ b1 ≤ 1.5b2 && b2 ≤ c ≤

2(t − 1.4)(b1 − b2) + 1.4b2, {b2, b1, c}]
Mathematica Output:
b2 > 0&& b2 ≤ b1 ≤ 1.5b2 && b2 ≤ c ≤ 0.66676b1 +

0.73324b2
3. We now find the expression for δ∗ that solves (15) and (17)

simultaneously.
Mathematica Input:
h =

9b22−16b2c−6δ∗(b2+2c)−9(δ∗)2

6(4b2+3δ∗)

+
3(b2+δ∗)

√
9b22+16b2c+6δ∗(3b2+2c)+9(δ∗)2

6(4b2+3δ∗) ;

Solve
[
b1
2 −

b2
4 −

(3b2−2b1)(2c+3h)
12

√
(8b1−3b2)

(3b2(8b2(c+h)−(2c+3h)2))

== δ∗, δ∗

]
Mathematica output:
{{δ∗

→ −4b2/3}(twice), {δ∗
→ Root[−16(b1 − b2)2b42(b

2
1 −

3b1b2+b22)2c2+(−4(b1−b2)b32(b
2
1−3b1b2+b22)(108b

2
1b

3
2−

108b1b42 + 27b52 + 24b31b2c + 96b21b
2
2c − 96b1b32c + 24b42c +

16b31c
2
−24b21b2c

2
+44b1b22c

2
−16b32c

2))#1+ (−144b61b
4
2 +

4176b41b
6
2−13752b31b

7
2+15660b21b

8
2−7218b1b92+1152b120−

256b61b
3
2c + 512b51b

4
2c + 4384b41b

5
2c − 18064b31b

6
2c

+ 21888b21b
7
2c − 10368b1b82c + 1680b92c − 96b61b

2
2c

2
+

320b51b
3
2c

2
− 144b41b

4
2c

2
− 1392b31b

5
2c

2
+ 1884b21b

6
2c

2
−

768b1b72c
2
+96b82c

2)#12
+(−192b61b

3
2+624b51b

4
2+4128b41b

5
2−

24828b31b
6
2+42984b21b

7
2−27432b1b82+5580b92−224b61b

2
2c+

768b51b
3
2c + 4960b41b

4
2c − 31904b31b

5
2c + 58680b21b

6
2c −

38808b1b72c+8064b82c−64b61b2c
2
+96b51b

2
2c

2
+1216b41b

3
2c

2
−

4120b31b
4
2c

2
+ 7632b21b

5
2c

2
− 5056b1b62c

2
+ 1016b72c

2)
#13

+ (−64b61b
2
2 + 288b51b

3
2 + 2400b41b

4
2 − 20496b31b

5
2 +

55512b21b
6
2 −52650b1b72 +14364b82 −64b61b2c+288b51b

2
2c+

2688b41b
3
2c − 23560b31b

4
2c + 69120b21b

5
2c − 70320b1b62c +

20040b72c − 16b61c
2

+ 1344b41b
2
2c

2
− 3280b31b

3
2c

2
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+ 2592b21b
4
2c

2
− 4020b1b52c

2
+ 1424b62c

2)#14
+ (576b41b

3
2 −

6864b31b
4
2+33696b21b

5
2−56628b1b62+24696b72+576b41b

2
2c−

7152b31b
3
2c + 37584b21b

4
2c − 70380b1b52c + 33360b62c +

432b41b2c
2

− 1560b31b
2
2c

2
− 5184b21b

3
2c

2
+ 10224b1b42c

2
−

2616b52c
2)#15

+ (−576b31b
3
2 + 7776b21b

4
2 − 32832b1b52 +

27396b62−576b31b
2
2c+7776b21b

3
2c−36720b1b42c+34272b52c−

432b31b2c
2

− 2916b21b
2
2c

2
+ 15876b1b32c

2
− 9729b42c

2)
#16

+ (−108b22(2b2 +3c)(36b1b2 −76b22 −18b1c+29b2c))#
17

+ (972b22(2b2 − c)(2b2 +3c))#18 &, 1]} (all eight roots)};

We verify (i) δ2 ≤ b2/3 when b1 ∈ [b2, 3b2/2], c ∈ [b2, 2b2],
(ii) δ1 ≤ b1/3 when b1 ∈ [b2, 3b2/2], c ∈ [b1, 2b2], (iii) the
left-hand side of (18) is nonnegative when b1 ∈ [b2, 3b2/2],
c ∈ [b2, α2], and (iv) 2(t − 1.36)(b1 − b2) + 1.36b2 ≤ α2 ≤

2(t − 1.4)(b1 − b2)+ 1.4b2, where t = 3(37+ 3
√
465)/176.

We will use bullet (3) above.
4. Wenowverify if δ2 ≤

b2
3 . From the statement of Theorem15,

we have δ2 =
b22/2+(2b2−c−3h/2)δ∗

3(h+δ∗)/2+c . We now initialize (h, δ∗)

as in bullet (3), and find the values of (c, b1, b2) for which
δ2 ≤ b2/3.
Mathematica Input:
δ∗

= Root[−16(b1 − b2)2b42(b
2
1 − 3b1b2 + b22)2c2 +

(−4(b1 − b2)b32(b
2
1 − 3b1b2 + b22)(108b

2
1b

3
2 − 108b1b42 +

27b52 + 24b31b2c + 96b21b
2
2c − 96b1b32c + 24b42c + 16b31c

2
−

24b21b2c
2
+44b1b22c

2
−16b32c

2))#1+(−144b61b
4
2+4176b41b

6
2−

13752b31b
7
2+15660b21b

8
2−7218b1b92+1152b120−256b61b

3
2c+

512b51b
4
2c + 4384b41b

5
2c − 18064b31b

6
2c + 21888b21b

7
2c −

10368b1b82c+1680b92c−96b61b
2
2c

2
+320b51b

3
2c

2
−144b41b

4
2c

2
−

1392b31b
5
2c

2
+ 1884b21b

6
2c

2
− 768b1b72c

2
+ 96b82c

2)#12
+

(−192b61b
3
2+624b51b

4
2+4128b41b

5
2−24828b31b

6
2+42984b21b

7
2−

27432b1b82 +5580b92 −224b61b
2
2c+768b51b

3
2c+4960b41b

4
2c−

31904b31b
5
2c + 58680b21b

6
2c − 38808b1b72c + 8064b82c −

64b61b2c
2

+ 96b51b
2
2c

2
+ 1216b41b

3
2c

2
− 4120b31b

4
2c

2

+ 7632b21b
5
2c

2
− 5056b1b62c

2
+ 1016b72c

2)#13
+ (−64b61b

2
2 +

288b51b
3
2+2400b41b

4
2−20496b31b

5
2+55512b21b

6
2−52650b1b72+

14364b82−64b61b2c+288b51b
2
2c+2688b41b

3
2c−23560b31b

4
2c+

69120b21b
5
2c−70320b1b62c+20040b72c−16b61c

2
+1344b41b

2
2c

2

−3280b31b
3
2c

2
+2592b21b

4
2c

2
−4020b1b52c

2
+1424b62c

2)#14
+

(576b41b
3
2−6864b31b

4
2+33696b21b

5
2−56628b1b62+24696b72+

576b41b
2
2c − 7152b31b

3
2c + 37584b21b

4
2c − 70380b1b52c +

33360b62c + 432b41b2c
2

− 1560b31b
2
2c

2
− 5184b21b

3
2c

2
+

10224b1b42c
2

− 2616b52c
2)#15

+ (−576b31b
3
2 + 7776b21b

4
2 −

32832b1b52+27396b62−576b31b
2
2c+7776b21b

3
2c−36720b1b42c

+ 34272b52c − 432b31b2c
2

− 2916b21b
2
2c

2
+ 15876b1b32c

2
−

9729b42c
2)#16

+(−108b22(2b2+3c)(36b1b2−76b22−18b1c+

29b2c))#17
+ (972b22(2b2 − c)(2b2 + 3c))#18 &, 5];

h =
9b22−16b2c−6δ∗(b2+2c)−9(δ∗)2

6(4b2+3δ∗)

+
3(b2+δ∗)

√
9b22+16b2c+6δ∗(3b2+2c)+9(δ∗)2

6(4b2+3δ∗) ;

δ2 =
b22/2+(2b2−c−3h/2)δ∗

(3(h+δ∗)/2+c) ;

Reduce[δ2 − b2/3 ≤ 0&& 0 ≤ b2 < b1 < 1.5b2 && b2 ≤ c
< 2b2, {b2, b1, c}]
Mathematica Output:
b2 > 0&& b2 < b1 < 1.5b2 && b2 ≤ c < 2b2

5. We now verify if δ1 ≤ b1/3.We use δ1 = δ∗
+

b1b2−2b2δ∗
−b22/2

3h/2+c
from the statement of Theorem 15.
Mathematica Input:
δ1 = δ∗

+
b1b2−2b2δ∗

−b22/2
3h/2+c ; Reduce[δ1 − b1/3 ≤ 0&& 0 ≤ b2

< b1 < 1.5b2 && b1 ≤ c < 2b2, {b2, b1, c}]
Mathematica Output:
b2 > 0&& b2 < b1 < 1.5b2 && b1 ≤ c < 2b2

6. We now verify the monotonicity of q, i.e., verify if the left-
hand side of (18) is nonnegative when c ∈ [b2, α2].
Mathematica Input:
Reduce[(b22 + 4b2δ∗

− 3δ∗h)(b22 + 4b2δ∗
− 2cδ∗

− 3δ∗h)
− 2b1b2(b22 + 4b2δ∗

− 2c(δ∗
+ h)− 3h(2δ∗

+ h)) ≥ 0&& 0 ≤

b2 ≤ b1 ≤ 1.5b2 && b2 ≤ c < 2b2, {b2, b1, c}]
Mathematica Output:
b2 > 0&& b2 ≤ b1 ≤ 1.5b2 && b2 ≤ c ≤ Root[fc−III (c) &, 3]

Here, fc−III (c) is a humongous polynomial running for several
pages. Define α2 := Root[fc−III (c) &, 3]. Then this proves
that the left-hand side of (18) is nonnegative for every c ∈

[b2, α2].
7. We finally verify the bounds on α2. We again find the values

of c for which the left-hand side of (18) is nonnegative, but
with c restricted to [2(t − 1.36)(b1 − b2) + 1.36b2, 2(t −

1.4)(b1 − b2) + 1.4b2].
Mathematica Input:
t =

3
176

(
37 + 3

√
465

)
; Reduce[(b22 + 4b2δ∗

− 3δ∗h)
(b22+4b2δ∗

−2cδ∗
−3δ∗h)−2b1b2(b22+4b2δ∗

−2c(δ∗
+h)−

3h(2δ∗
+h)) ≥ 0&& 0 ≤ b2 ≤ b1 ≤ 1.5b2 &&2(t−1.36)(b1−

b2)+ 1.36b2 ≤ c ≤ 2(t − 1.4)(b1 − b2)+ 1.4b2, {b2, b1, c}]
Mathematica Output:
b2 > 0&& b2 ≤ b1 ≤ 1.5b2
&&0.746758b1 + 0.613242b2 ≤ c ≤ Root[fc−III (c) &, 3]
This completes all the proofs in Theorem 15.
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