Nandy, Sourav and Sen, Arnab and Sen, Diptiman (2018) Steady states of a quasiperiodically driven integrable system. In: PHYSICAL REVIEW B, 98 (24).
![]() |
PDF
Phy_Rev_B_98_24_2018.pdf - Published Version Restricted to Registered users only Download (3MB) | Request a copy |
Abstract
Driven many-body quantum systems where some parameter in the Hamiltonian is varied quasiperiodically in time may exhibit nonequilibrium steady states that are qualitatively different from their periodically driven counterparts. Here we consider a prototypical integrable spin system, the spin-1/2 transverse field Ising model in one dimension, in a pulsed magnetic field. The time dependence of the field is taken to be quasiperiodic by choosing the pulses to be of two types that alternate according to a Fibonacci sequence. We show that a steady state emerges after an exponentially long time when local properties (or equivalently, reduced density matrices of subsystems with size much smaller than the full system) are considered. We use the temporal evolution of certain coarse-grained quantities in momentum space to understand this nonequilibrium steady state in more detail and show that unlike the previously known cases, this steady state is neither described by a periodic generalized Gibbs ensemble nor by an infinite temperature ensemble. Finally, we study a toy problem with a single two-level system driven by a Fibonacci sequence; this problem shows how sensitive the nature of the final steady state is to the different parameters.
Item Type: | Journal Article |
---|---|
Publication: | PHYSICAL REVIEW B |
Publisher: | AMER PHYSICAL SOC |
Additional Information: | Copyright of this article belongs to AMER PHYSICAL SOC |
Department/Centre: | Division of Physical & Mathematical Sciences > Centre for High Energy Physics |
Date Deposited: | 28 Jan 2019 09:23 |
Last Modified: | 28 Jan 2019 09:23 |
URI: | http://eprints.iisc.ac.in/id/eprint/61483 |
Actions (login required)
![]() |
View Item |