ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

HARDY AND MIYACHI THEOREMS FOR HEISENBERG MOTION GROUPS

Baklouti, Ali and Thangavelu, Sundaram (2018) HARDY AND MIYACHI THEOREMS FOR HEISENBERG MOTION GROUPS. In: NAGOYA MATHEMATICAL JOURNAL, 229 . pp. 1-20.

Full text not available from this repository. (Request a copy)
Official URL: http://dx.doi.org/10.1017/nmj.2016.58

Abstract

Let G = H-n x K be the Heisenberg motion group, where K = U(n) acts on the Heisenberg group H-n = C-n x R by automorphisms. We formulate and prove two analogues of Hardy's theorem on G. An analogue of Miyachi's theorem for G is also formulated and proved. This allows us to generalize and prove an analogue of the Cowling-Price uncertainty principle and prove the sharpness of the constant 1/4 in all the settings.

Item Type: Journal Article
Publication: NAGOYA MATHEMATICAL JOURNAL
Publisher: CAMBRIDGE UNIV PRESS
Additional Information: Copy right for this article belong to CAMBRIDGE UNIV PRESS
Department/Centre: Division of Physical & Mathematical Sciences > Mathematics
Date Deposited: 11 Oct 2018 13:53
Last Modified: 11 Oct 2018 13:53
URI: http://eprints.iisc.ac.in/id/eprint/60864

Actions (login required)

View Item View Item