ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: Ultrafast transient absorption and ultrafast Raman loss spectroscopic studies

Kayal, Surajit and Roy, Khokan and Umapathy, Siva (2018) Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: Ultrafast transient absorption and ultrafast Raman loss spectroscopic studies. In: JOURNAL OF CHEMICAL PHYSICS, 148 (2).

Full text not available from this repository. (Request a copy)
Official URL: http://dx.doi.org/10.1063/1.5008726

Abstract

Ultrafast torsional dynamics plays an important role in the photoinduced excited state dynamics. Tetraphenylethylene (TPE), a model system for the molecular motor, executes interesting torsional dynamics upon photoexcitation. The photoreaction of TPE involves ultrafast internal conversion via a nearly planar intermediate state (relaxed state) that further leads to a twisted zwitterionic state. Here, we report the photoinduced structural dynamics of excited TPE during the course of photoisomerization in the condensed phase by ultrafast Raman loss (URLS) and femtosecond transient absorption (TA) spectroscopy. TAmeasurements on the S1 state reveal step-wise population relaxation from the FranckCondon (FC) state -> relaxed state -> twisted state, while the URLS study provides insights on the vibrational dynamics during the course of the reaction. The TA spectral dynamics and vibrational Raman amplitudes within 1 ps reveal vibrational wave packet propagating from the FC state to the relaxed state. Fourier transformation of this oscillation leads to a similar to 130 cm(-1) low-frequency phenyl torsional mode. Two vibrational marker bands, C-et=C-et stretching (similar to 1512cm(-1)) and C-ph=C-ph stretching (similar to 1584 cm(-1)) modes, appear immediately after photoexcitation in the URLS spectra. The initial red-shift of the C-ph=C-ph stretching mode with a time constant of similar to 400 fs (in butyronitrile) is assigned to the rate of planarization of excited TPE. In addition, the C-et=C-et stretching mode shows initial blue-shift within 1 ps followed by frequency red-shift, suggesting that on the subpicosecond time scale, structural relaxation is dominated by phenyl torsion rather than the central C-et=C-et twist. Furthermore, the effect of the solvent on the structural dynamics is discussed in the context of ultrafast nuclear dynamics and solute-solvent coupling. Published by AIP Publishing.

Item Type: Journal Article
Publication: JOURNAL OF CHEMICAL PHYSICS
Additional Information: Copy right for this article belong to the AMER INST PHYSICS, 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
Department/Centre: Division of Chemical Sciences > Inorganic & Physical Chemistry
Division of Physical & Mathematical Sciences > Instrumentation Appiled Physics
Date Deposited: 02 Mar 2018 15:05
Last Modified: 02 Mar 2018 15:05
URI: http://eprints.iisc.ac.in/id/eprint/58917

Actions (login required)

View Item View Item