ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Zinc oxide quantum dots decorated carbon nanotubes for improved opto-electro-mechanical response

Nandi, Sukanta and Boruah, Buddha Deka and Misra, Abha (2017) Zinc oxide quantum dots decorated carbon nanotubes for improved opto-electro-mechanical response. In: SENSORS AND ACTUATORS A-PHYSICAL, 267 . pp. 351-359.

[img] PDF
Sens_Act_A_267_351_2017.pdf - Published Version
Restricted to Registered users only

Download (3MB) | Request a copy
Official URL: http://dx.doi.org/10.1016/j.sna.2017.08.046


Hybrid nanostructures play a major role towards outstanding performance of nano-devices by coupling different functionalities. In this study, we report in-situ decoration of zinc oxide quantum dots (QDs) on the outer walls of multi-walled carbon nanotubes (MWCNT). The coupling of MWCNT and QDs not only provides excellent radiation sensitivity but also a high mechanical actuation induced by electrical polarization. A flexible thin paper-based device demonstrated combined opto-electro-mechanical performance under constant electric field with similar to 122% enhancement in the response current for optoelectrical and similar to 345% enhancement in actuation for electromechanical properties of the hybrid paper device as compared to the response from the pristine sample. (C) 2017 Elsevier B.V. All rights reserved.

Item Type: Journal Article
Publisher: 10.1016/j.sna.2017.08.046
Additional Information: Copy right for this article belongs to the ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE, SWITZERLAND
Keywords: 1. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis,Structure, Properties and Applications, Springer, Berlin, 2001. 2. B. Arash, Q. Wang, V.K. Varadan, Mechanical properties of carbon nanotube/polymer composites, Sci. Rep. 4 (2014) 6479. 3. J.W.G. Wildoer, L.C. Venema, A.G. Rinzier, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391 (1998) 59–62. 4. P.R. Bandaru, Electrical properties and applications of carbon nanotube structures, J. Nanosci. Nanotechnol. 7 (2007) 1239–1267. 5. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon Nanotubes–the route toward applications, Science 297 (2002) 787–792. 6. C. Wei, L. Dai, A. Roy, T.B. Tolle, Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites, J. Am. Chem. Soc. 128 (2006) 1412–1413. 7. D.R. Kauffman, A. Star, Carbon nanotube gas and vapor sensors, Angew. Chem. Int. Ed. 47 (2008) 6550–6570. 8. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature 381 (1996) 678. 9. A. Misra, J.R. Greer, C. Daraio, Strain rate effects in the mechanical response of polymer-Anchored carbon nanotube foams, Adv. Mater. 21 (2009) 334–338. 10. A.J. Wang, Y. Feng, L.L. Long, Y.L. Song, W. Yu, M.P. Cifuentes, M.G.C.Humphrey Zhang, Facile synthesis and enhanced nonlinear optical properties of Porphyrin-Functionalized Multi-Walled carbon nanotubes, Chem. Eur. J. 19(2013) 14159–14170. 11. H. Tang, J.H. Chen, S.Z. Yao, L.H. Nie, G.H. Deng, Y.F. Kuang, Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode, Anal. Biochem. 331 (2004)89–97. 12. K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes, Small 1 (2005) 180–192. 13. K.A. Wepasnick, B.A. Smith, J.L. Bitter, D.H. Fairbrother, Chemical and structural characterization of carbon nanotube surfaces, Anal. Bioanal. Chem. 396 (2010) 1003–1014. 14. A. Eitan, K. Jiang, D. Dukes, R. Andrews, L.S. Schadler, Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites, Chem. Mater. 15 (2003) 3198–3201. 15. A. Ashkarran, M. Fakhari, H. Hamidinezhad, H. Haddadi, M.R. Nourani, TiO2 nanoparticles immobilized on carbon nanotubes for enhanced visible-light photo-induced activity, J. Mater. Res. Technol. 4 (2015) 126–132. 16. B. Gao, G.Z. Chen, G.L. Puma, Carbon nanotubes/titanium dioxide (CNTs/TiO2 )nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity, Appl. Catal. B 89 (2009) 503–509. 17. Y. Zhu, H.I. Elim, Y.L. Foo, T. Yu, Y. Liu, W. Ji, J.Y. Lee, Z. Shen, A.T.S. Wee, J.T.L.Thong, Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching, Adv. Mater. 18 (2006) 587–592. 18. M. Dutta, D. Basak, Photosensitization of multiwalled carbon nanotube scaffolds with ZnO quantum dots for photovoltaic applications, J. Nanopart.Res. 13 (2011) 5311–5319. 19. N. Wang, J.X. Xu, L. Guan, Synthesis and enhanced photocatalytic activity of tin oxide nanoparticles coated on multi-walled carbon nanotube, Mater. Res.Bull. 46 (2011) 1372–1376. 20. J. Chen, J. Wu, W. Lei, X. Zhang, Photoelectrochemical properties of multiwall carbon nanotube assembled with CdSe quantum dots, Phys. Status Solidi C 9(2012) 59–61. 21. L. Fu, Z. Liu, Y. Liu, B. Han, P. Hu, L. Cao, D. Zhu, Beaded cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices, Adv. Mater. 17 (2005) 217–221. 22. T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She, J. Wang, T. Li, Z. Liu, B. Wei,Electromagnetic wave absorbing properties of amorphous carbon nanotubes,Sci. Rep. 4 (2014) 5619. 23. B.D. Boruah, A. Misra, Conjugated assembly of colloidal zinc oxide quantum dots and multiwalled carbon nanotubes for an excellent photosensitive ultraviolet photodetector, Nanotechnology 27 (2016) 355204. 24. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.He, H.-J. Choi, Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater. 12 (2002) 323–331. 25. Y.C. Hsieh, Y.C. Chou, C.P. Lin, T.F. Hsieh, C.M. Shu, Thermal analysis of multi-walled carbon nanotubes by Kissinger’s corrected kinetic equation,Aerosol. Air Qual. Res. 10 (2010) 212–218. 26. D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier, J.P. Selegue,Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry,Nano Lett. 2 (2002) 615–619. 27. G.S.B. McKee, K.S. Vecchio, Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes, J. Phys. Chem. B 110(2006) 1179–1186. 28. V. Musat, A. Tabacaru, B.S. Vasile, V.-A. Surdu, Size-dependent photoluminescence of zinc oxide quantum dots through organosilane functionalization, RSC Adv. 4 (2014) 63128–63136. 29. C.S. Chen, X.H. Chen, B. Yi, T.G. Liu, W.H. Li, L.S. Xu, Z. Yang, H. Zhang, Y.G.Wang, Zinc oxide nanoparticle decorated multi-walled carbon nanotubes and their optical properties, Acta Mater. 54 (2006) 5401–5407. 30. M. Morsy, M. Helal, M. El-Okr, M. Ibrahim, Preparation and characterization of multiwall carbon nanotubes decorated with zinc oxide, Der Pharm. Chem. 7(2015) 139–144. 31. R. Afrin, J. Khaliq, M. Islam, I.H. Gul, A.S. Bhatti, U. Manzoor, Synthesis of multiwalled carbon nanotube-based infrared radiation detector, Sens.Actuator A Phys. 187 (2012) 73–78. 32. J.L. Ciou, J.H. Liu, H.Y. Miao, A study on the properties of photoconductivity and photo voltage of buckpaper, Nano/Micro engineered and molecular systems (NEMS), in: IEEE International Conference, Kaohsiung, Taiwan, 2011,pp. 109–112. 33. R. Afrin, N. Shah, M. Abbas, M. Amin, A.S. Bhatti, Design and analysis of functional multiwalled carbon nanotubes for infrared sensors, Sens. Actuator A Phys. 203 (2013) 142–148. 34. S. Battal, M.Y. Bolat, A.K. Tanrikulu, T. Okyay, Atomic-layer-deposited zinc oxide as tunable uncooled infrared microbolometer material, Phys. Status Solidi A 211 (2014) 2475–2482. 35. W. Tian, T. Zhai, C. Zhang, S.-L. Li, X. Wang, F. Liu, D. Liu, X. Cai, K. Tsukagoshi,D. Golberg Y. Bando, Low-Cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers, Adv. Mater. 25(2013) 4625–4630. 36. M.V. Alves, B. Koiller, H. Chacham, R.B. Capaz, Electromechanical effects in carbon nanotubes: ab initio and analytical tight-binding calculations, Phys.Rev. B 67 (2003) 161401R. 37. Y.N. Gartstein, A.A. Zakhidov, R.H. Baughman, Charge-induced anisotropic distortions of semiconducting and metallic carbon nanotubes, Phys. Rev. Lett.89 (2002) (045503/1-045503/4). 38. P.-J. Cottinet, C. Souders, D. Labrador, S. Porter, Z. Liang, B. Wang, C. Zhang,Nonlinear strain–electric field relationship of carbon nanotube buckypaper/Nafion actuators, Sens. Actuator A Phys. 170 (2011) 164–171. 39. M. Rasekh, S.E. Khadem, M. Tatari, Nonlinear behaviour of electrostatically actuated carbon nanotube-based devices, J. Phys. D Appl. Phys. 43 (2010)(315301/1-315301/10). 40. A. Misra, P. Kumar, Tailoring viscoelastic response of carbon nanotubes cellular structure using electric field, Nanoscale 6 (2014) 13668–13677. 41. P. Gowda, S. Mukherjee, S.K. Reddy, R. Ghosh, A. Misra, Giant actuation in bulk carbon nanotubes under coupled electric and magnetic fields, RSC Adv. 5(2015) 26157–26162. 42. P. Gowda, P. Kumar, R. Tripathi, A. Misra, Electric field induced ultra-high actuation in a bulk carbon nanotube structure, Carbon 67 (2014) 546–553. 43. I.-W.P. Chen, Z.Y. Liang, B. Wang, C. Zhang, Charge-induced asymmetrical displacement of an aligned carbon nanotube buckypaper actuator, Carbon 48(2010) 1064–1069. 44. X. Choi, M. Meshik, M.A. Dutta, Screening effect on electric field produced by spontaneous polarization in ZnO quantum dot in electrolyte, in: 18th International Workshop on Computational Electronics, IWCE, Institute of Electrical and Electronics Engineers Inc., West Lafayette, United States, 2015,pp. 7301943. 45. S. Farid, M. Choi, D. Datta, M.A. Stroscio, M. Dutta, Spontaneous polarization induced electric field in zinc oxide nanowires and nanostars, J. Appl. Phys. 119 (2016) (163108/1-163108/7). 46. B.D. Boruah, A. Misra, ZnO quantum dots and graphene based heterostructure for excellent photoelastic and highly sensitive ultraviolet photodetector, RSC Adv. 5 (2015) 90838–90846. 47. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 312 (2006) 242–246. 48. M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S.Y. Lee, J.M. Kim,S.-W. Kim, Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods, Adv. Mater. 21 (2009) 2185–2189. 49. Y. Yang, H. Tian, H. Sun, R.-J. Xu, Y. Shu, T.-L. Ren, A spring-connected nanogenerator based on ZnO nanoparticles and a multiwall carbon nanotube,RSC Adv. 4 (2014) 2115–2118.
Department/Centre: Division of Physical & Mathematical Sciences > Instrumentation Appiled Physics
Date Deposited: 12 Jan 2018 07:11
Last Modified: 12 Jan 2018 07:11
URI: http://eprints.iisc.ac.in/id/eprint/58747

Actions (login required)

View Item View Item