ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Effect of selenium incorporation at precursor stage on growth and properties of Cu2ZnSnSe4 thin films

Nagapure, Dipak Ramdas and Patil, Rhishikesh Mahadev and Mary, Swapna G and Chandra, Hema G and Sunil, Anantha TH and Subbaiah, Venkata YP and Gupta, Mukul and Rao, Prasada R (2017) Effect of selenium incorporation at precursor stage on growth and properties of Cu2ZnSnSe4 thin films. In: VACUUM, 144 . pp. 43-52.

[img] PDF
VAC_144_43_2017.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy
Official URL: http://doi.org/10.1016/j.vacuum.2017.07.014

Abstract

In the present work, the effect of the selenium incorporation in between the Sn-ZnSe-Cu precursor layers on growth of Cu2ZnSnSe4 thin films by employing selenization is reported. Multiple stacks of precursors (Sn/Se/ZnSe/Se/Cu/Se) were sequentially evaporated in high vacuum onto soda lime glass substrates held at 100 degrees C and their subsequent selenization at 350 degrees C using a tubular furnace led to the complete crystallization into single phase Cu2ZnSnSe4 films. X-ray diffraction pattern of stacked layers selenized at 350 degrees C revealed the formation of kesterite-type Cu2ZnSnSe4 films with a preferred orientation along (112) plane. Raman analysis using multi wavelength excitation confirms the growth of single phase CZTSe films. Secondary ion mass spectroscopy (SIMS) depth profiles illustrated fairly uniform distribution of constituent elements. Optical absorption studies of the films showed an optical band gap of 0.97 eV with high absorption coefficient (> 10(4)cm(-1)). The electrical properties of the films exhibited p-type conductivity with resistivity of 4.18 Omega cm, mobility of 11.3 cm(2)(Vs)(-1) and carrier concentration of 1.32 x 10(17) cm(-3). Our approach and results would open a new way for the synthesis of Cu2ZnSnSe4 directly on plastic substrates. (c) 2017 Elsevier Ltd. All rights reserved.

Item Type: Journal Article
Publication: VACUUM
Additional Information: Copy right for this article belongs to the PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
Department/Centre: Division of Physical & Mathematical Sciences > Instrumentation Appiled Physics
Date Deposited: 21 Oct 2017 06:18
Last Modified: 28 Feb 2019 06:20
URI: http://eprints.iisc.ac.in/id/eprint/58046

Actions (login required)

View Item View Item