ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Contrasting speed-accuracy tradeoffs for eye and hand movements reveal the optimal nature of saccade kinematics

Gopal, Atul and Jana, Sumitash and Murthy, Aditya (2017) Contrasting speed-accuracy tradeoffs for eye and hand movements reveal the optimal nature of saccade kinematics. In: JOURNAL OF NEUROPHYSIOLOGY, 118 (3). pp. 1664-1676.

[img] PDF
Jou_Neu_118-3_1664_2017.pdf - Published Version
Restricted to Registered users only

Download (412kB) | Request a copy
Official URL: http://doi.org/10.1152/jn.00329.2017


In contrast to hand movements, the existence of a neural representation of saccade kinematics is unclear. Saccade kinematics is typically thought to be specified by motor error/desired displacement and generated by brain stem circuits that are not penetrable to voluntary control. We studied the influence of instructed hand movement velocity on the kinematics of saccades executed without explicit instructions. When the hand movement was slow the saccade velocity decreased, independent of saccade amplitude. We leveraged this modulation of saccade velocity to study the optimality of saccades (in terms of velocity and endpoint accuracy) in relation to the well-known speed-accuracy tradeoff that governs voluntary movements (Fitts' law). In contrast to hand movements that obeyed Fitts' law, normometric saccades exhibited the greatest endpoint accuracy and lower reaction times, relative to saccades accompanying slow and fast hand movements. In the slow condition, where saccade endpoint accuracy suffered, we observed that targets were more likely to be foveated by two saccades resulting in step-saccades. Interestingly, the endpoint accuracy was higher in two-saccade trials, compared with one-saccade trials in both the slow and fast conditions. This indicates that step-saccades are a part of the kinematic plan for optimal control of endpoint accuracy. Taken together, these findings suggest normometric saccades are already optimized to maximize endpoint accuracy and the modulation of saccade velocity by hand velocity is likely to reflect the sharing of kinematic plans between the two effectors. NEW & NOTEWORTHY The optimality of saccade kinematics has been suggested by modeling studies but experimental evidence is lacking. However, we observed that, when subjects voluntarily modulated their hand velocity, the velocity of saccades accompanying these hand movements was also modulated, suggesting a shared kinematic plan for eye and hand movements. We leveraged this modulation to show that saccades had less endpoint accuracy when their velocity decreased, illustrating that normometric saccades have optimal speed and accuracy.

Item Type: Journal Article
Additional Information: Copy right for this article belongs to the AMER PHYSIOLOGICAL SOC, 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA
Department/Centre: Division of Biological Sciences > Centre for Neuroscience
Date Deposited: 13 Oct 2017 04:52
Last Modified: 13 Oct 2017 04:52
URI: http://eprints.iisc.ac.in/id/eprint/58029

Actions (login required)

View Item View Item