ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Subsurface profiling using integrated geophysical methods for 2D site response analysis in Bangalore city, India: a new approach

Chandran, Deepu and Anbazhagan, P (2017) Subsurface profiling using integrated geophysical methods for 2D site response analysis in Bangalore city, India: a new approach. In: JOURNAL OF GEOPHYSICS AND ENGINEERING, 14 (5). pp. 1300-1314.

[img] PDF
Jou_Geo_Eng_14-5_1300_2017.pdf - Published Version
Restricted to Registered users only

Download (6MB) | Request a copy
Official URL: http://doi.org/10.1088/1742-2140/aa7bc4


Recently, site response analysis has become a mandatory step for the design of important structures. Subsurface investigation is an essential step, from where the input parameters for the site response study like density, shear wave velocity (Vs), thickness and damping characteristics, etc, are obtained. Most site response studies at shallow bedrock sites are one-dimensional (1D) and are usually carried out by using Vs from multi-channel analysis of surface waves (MASW) or a standard penetration test (SPT) for N values with assumptions that soil layers are horizontal, uniform and homogeneous. These assumptions are not completely true in shallow bedrock regions as soil deposits are heterogeneous. The objective of this study is to generate the actual subsurface profiles in two-dimensions at shallow bedrock regions using integrated subsurface investigation testing. The study area selected for this work is Bangalore, India. Three survey lines were selected in Bangalore at two different locations; one at the Indian Institute of Science (IISc) Campus and the other at Whitefield. Geophysical surveys like ground penetrating radar (GPR) and 2D MASW were carried out at these survey lines. Geophysical test results are compared and validated with a conventional geotechnical SPT. At the IISc site, the soil profile is obtained from a trench excavated for a proposed pipeline used to compare the geophysical test results. Test results show that GPR is very useful to delineate subsurface layers, especially for shallow depths at both sites (IISc Campus and Whitefield). MASW survey results show variation of Vs values and layer thickness comparatively at deeper depths for both sites. They also show higher density soil strata with high Vs value obtained at the IISc Campus site, whereas at the Whitefield site weaker soil with low shear velocity is observed. Combining these two geophysical methods helped to generate representative 2D subsurface profiles. These subsurface profiles can be further used to understand the difference between 1D and 2D site response.

Item Type: Journal Article
Additional Information: Copy right for this article belongs to the IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
Department/Centre: Division of Mechanical Sciences > Civil Engineering
Date Deposited: 13 Oct 2017 04:51
Last Modified: 13 Oct 2017 04:51
URI: http://eprints.iisc.ac.in/id/eprint/58007

Actions (login required)

View Item View Item