ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Development of a syngas-fired catalytic combustion system for hybrid solar-thermal applications

Gupta, Mayank and Pramanik, Santanu and Ravikrishna, RV (2016) Development of a syngas-fired catalytic combustion system for hybrid solar-thermal applications. In: APPLIED THERMAL ENGINEERING, 109 (B). pp. 1023-1030.

[img] PDF
App_The_Eng_109_1023_B_2016.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy
Official URL: http://dx.doi.org/10.1016/j.applthermaleng.2016.04...

Abstract

This paper describes the development and operation of a catalytic combustion system for use with syngas as an important component of a hybrid heating source for solar-thermal power generation. The reactor consists of a cylindrical ceramic monolith with porous alumina washcoat in which platinum is distributed as the catalyst. Two fuel-rich equivalence ratios were studied over a range of flow rates. The fuel-rich conditions permit low temperature combustion without the problem of hotspots likely to occur under fuel-lean conditions with hydrogen-containing fuels. Experimental data of temperature and species concentration at the exit of the reactor have been reported for a maximum fuel thermal input of 34 kW. The system exhibited quick start-up with a light-off time of around 60 s and a steady-state time of around 200 s as determined from the transient temperature profiles. The experimental results have also been complemented with detailed two-dimensional numerical simulations for improved understanding of the combustion characteristics in the reactor. The simulations suggest that the combustion system can be operated at a turn-down ratios far in excess of 1.67, which is the maximum value that has been investigated in the present setup. Stable operation, quick startup, and high turn-down ratio are some of the key features that enable the proposed combustion system to accommodate the transients in solar-thermal applications. (C) 2016 Elsevier Ltd. All rights reserved.

Item Type: Journal Article
Publication: APPLIED THERMAL ENGINEERING
Publisher: PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
Additional Information: Copy right for this article belongs to the PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
Department/Centre: Division of Mechanical Sciences > Mechanical Engineering
Date Deposited: 07 Jan 2017 09:56
Last Modified: 29 Sep 2018 06:40
URI: http://eprints.iisc.ac.in/id/eprint/55885

Actions (login required)

View Item View Item