Arief, Injamamul and Biswas, Sourav and Bose, Suryasarathi (2016) Tuning the Shape Anisotropy and Electromagnetic Screening Ability of Ultrahigh Magnetic Polymer and Surfactant-Capped FeCo Nanorods and Nanocubes in Soft Conducting Composites. In: ACS APPLIED MATERIALS & INTERFACES, 8 (39). pp. 26285-26297.
![]() |
PDF
Acs_App_Mat_Int_8-39_2628_2016.pdf - Published Version Restricted to Registered users only Download (2MB) | Request a copy |
Abstract
Herein, we demonstrate that very high electromagnetic (EM) shielding efficiency can be achieved by dispersing nanoengineered FeCo anisometric nanostructures in a poly(vinylidene difluoride) matrix in the presence of conductive nanofillers (multiwall carbon nanotubes, MWCNTs). The FeCo nanorods (similar to 800 nm) and nanocubes (similar to 100 nm) were fabricated by a facile surfactant and polymer-assisted one-pot borohydride reduction method. The growth mechanism depicted a two-directional growth for cubes, whereas for nanorods, a unidirectional growth pattern across the (,110) plane was evident. A total shielding effectiveness (SET) of -44 dB at 18 GHz was achieved for a particular combination of FeCo nanorods and MWCNT, and for nanocube-based composites, it was found to be -39 dB at 18 GHz. It was observed from zero field cooled-field cooled curves that the samples displayed room temperature ferromagnetism. An excellent correlation between high aspect ratio FeCo nanorod and superior EM absorption (89%) was explored, pertaining to the fact that nanorods possessed higher magnetic saturation (177.1 emu/g) and coercivity (550 Oe) in contrast to the nanocubes with similar composition. Furthermore, theoretical insight into the mechanism revealed a high degree of interface scattering between conductive MWCNT and magnetic loss components, giving rise to an excellent synergy between magnetic and dielectric parts.
Item Type: | Journal Article |
---|---|
Publication: | ACS APPLIED MATERIALS & INTERFACES |
Additional Information: | Copy right for this article belongs to the AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA |
Department/Centre: | Division of Mechanical Sciences > Materials Engineering (formerly Metallurgy) |
Date Deposited: | 03 Dec 2016 06:22 |
Last Modified: | 03 Dec 2016 06:22 |
URI: | http://eprints.iisc.ac.in/id/eprint/55271 |
Actions (login required)
![]() |
View Item |