Chatterjee, Avishek and Govindu, Venu Madhav (2013) Efficient and Robust Large-Scale Rotation Averaging. In: IEEE International Conference on Computer Vision (ICCV), DEC 01-08, 2013, Sydney, AUSTRALIA, pp. 521-528.
PDF
Iee_Int_Con_521_2013.pdf - Published Version Restricted to Registered users only Download (408kB) | Request a copy |
Abstract
In this paper we address the problem of robust and efficient averaging of relative 3D rotations. Apart from having an interesting geometric structure, robust rotation averaging addresses the need for a good initialization for large-scale optimization used in structure-from-motion pipelines. Such pipelines often use unstructured image datasets harvested from the internet thereby requiring an initialization method that is robust to outliers. Our approach works on the Lie group structure of 3D rotations and solves the problem of large-scale robust rotation averaging in two ways. Firstly, we use modern l(1) optimizers to carry out robust averaging of relative rotations that is efficient, scalable and robust to outliers. In addition, we also develop a two-step method that uses the l(1) solution as an initialisation for an iteratively reweighted least squares (IRLS) approach. These methods achieve excellent results on large-scale, real world datasets and significantly outperform existing methods, i.e. the state-of-the-art discrete-continuous optimization method of 3] as well as the Weiszfeld method of 8]. We demonstrate the efficacy of our method on two large-scale real world datasets and also provide the results of the two aforementioned methods for comparison.
Item Type: | Conference Proceedings |
---|---|
Publisher: | IEEE |
Additional Information: | Copy right for this article belongs to the IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA |
Department/Centre: | Division of Electrical Sciences > Electrical Engineering |
Date Deposited: | 24 Aug 2016 10:20 |
Last Modified: | 24 Aug 2016 10:20 |
URI: | http://eprints.iisc.ac.in/id/eprint/54310 |
Actions (login required)
View Item |