Dubey, Rajeev K and Inan, Damla and Sengupta, Sanchita and Sudholter, Ernst JR and Grozema, Ferdinand C and Jager, Wolter F (2016) Tunable and highly efficient light-harvesting antenna systems based on 1,7-perylene-3,4,9,10-tetracarboxylic acid derivatives. In: CHEMICAL SCIENCE, 7 (6). pp. 3517-3532.
|
PDF
Che_Sci_7-6_3517_2016.pdf - Published Version Download (2MB) | Preview |
Abstract
We report the synthesis and excited-state dynamics of a series of five bichromophoric light-harvesting antenna systems, which are capable of efficient harvesting of solar energy in the spectral range of 350-580 nm. These antenna systems have been synthesized in a modular fashion by the covalent attachment of blue light absorbing naphthalene monoimide energy donors (D1, D2, and D3) to green light absorbing perylene-3,4,9,10-tetracarboxylic acid derived energy acceptors, 1,7-perylene-3,4,9,10-tetracarboxylic tetrabutylester (A1), 1,7-perylene-3,4,9,10-tetracarboxylic monoimide dibutylester (A2), and 1,7-perylene-3,4,9,10-tetracarboxylic bisimide (A3). The energy donors have been linked at the 1,7-bay-positions of the perylene derivatives, thus leaving the peri positions free for further functionalization and device construction. A highly stable and rigid structure, with no electronic communication between the donor and acceptor components, has been realized via an all-aromatic non-conjugated phenoxy spacer between the constituent chromophores. The selection of donor naphthalene derivatives for attachment with perylene derivatives was based on the effective matching of their respective optical properties to achieve efficient excitation energy transfer (EET) by the Forster mechanism. A comprehensive study of the excited-state dynamics, in toluene, revealed quantitative and ultrafast (ca. 1 ps) intramolecular EET from donor naphthalene chromophores to the acceptor perylenes in all the studied systems. Electron transfer from the donor naphthalene chromophores to the acceptor perylenes has not been observed, not even for antenna systems in which this process is thermodynamically allowed. Due to the combination of an efficient and fast energy transfer along with broad absorption in the visible region, these antenna systems are promising materials for solar-to-electric and solar-to-fuel devices.
Item Type: | Journal Article |
---|---|
Publication: | CHEMICAL SCIENCE |
Publisher: | ROYAL SOC CHEMISTRY |
Additional Information: | Copy right for this article belongs to the ROYAL SOC CHEMISTRY, THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND |
Department/Centre: | Division of Interdisciplinary Sciences > Interdisciplinary Centre for Energy Research |
Date Deposited: | 05 Jul 2016 06:48 |
Last Modified: | 01 Feb 2019 09:42 |
URI: | http://eprints.iisc.ac.in/id/eprint/54161 |
Actions (login required)
View Item |