Panigrahy, Bharati and Srivastava, Sachchidanand (2016) Minuscule weight percent of graphene oxide and reduced graphene oxide modified Ag3PO4: new insight into improved photocatalytic activity. In: NEW JOURNAL OF CHEMISTRY, 40 (4). pp. 3370-3384.
PDF
New_Jou_Che_40-4_3370_2016.pdf - Published Version Restricted to Registered users only Download (4MB) | Request a copy |
Abstract
Designing and fabricating hybrid systems with a visible light active semiconductor as one of its components is an important research area for the development of highly efficient photocatalysts. Herein, we report visible-light driven photocatalytic activity of graphene oxide (GO) and controllably reduced GO (rGO) modified Ag3PO4 composites fabricated by an in situ method. Concentration of graphene derivatives in GO/rGO-Ag3PO4 composites was in the range of 0.13-0.52 wt% which is very minute compared to those reported previously. The optimal concentration of GO in Ag3PO4 with a kinetics (k = 1.23 +/- 0.04 min(-1)) for the degradation of rhodamine B is 0.26 wt%. GO-Ag3PO4 photocatalysts display an improved catalytic activity compared with pristine and rGOs modified Ag3PO4. In line with this, GO/rGO-Ag3PO4 composites show improved photocatalytic activity for the degradation of 2-chlorophenol compared with Degussa P-25. Our experiments with GO reduced to different extents show that, rGO with more polar functional groups exhibits a higher photocatalytic efficiency. The photocatalytic activity in the presence of different scavengers reveals that holes and O-2(-center dot) reactive species play major roles in the degradation phenomenon. In view of our experimental results and reported theoretical studies, a change in conduction band energy level and variation in the contribution of different charge orbitals (C 2p and O 2p) to the conduction band in the composite favours electron flow from graphene derivatives to the semiconductor, enhancing its photocatalytic response.
Item Type: | Journal Article |
---|---|
Publication: | NEW JOURNAL OF CHEMISTRY |
Publisher: | ROYAL SOC CHEMISTRY |
Additional Information: | Copy right for this article belongs to the ROYAL SOC CHEMISTRY, THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND |
Department/Centre: | Division of Chemical Sciences > Solid State & Structural Chemistry Unit |
Date Deposited: | 12 May 2016 06:49 |
Last Modified: | 12 May 2016 06:49 |
URI: | http://eprints.iisc.ac.in/id/eprint/53822 |
Actions (login required)
View Item |