ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Mutations in the nucleotide binding and hydrolysis domains of Helicobacter pylori MutS2 lead to altered biochemical activities and inactivation of its in vivo function

Damke, Prashant P and Dhanaraju, Rajkumar and Marsin, Stephanie and Radicella, Pablo J and Rao, Desirazu N (2016) Mutations in the nucleotide binding and hydrolysis domains of Helicobacter pylori MutS2 lead to altered biochemical activities and inactivation of its in vivo function. In: BMC MICROBIOLOGY, 16 .

[img]
Preview
PDF
BMC_Mic_16_14_2016.pdf - Published Version

Download (894kB) | Preview
Official URL: http://dx.doi.org/10.1186/s12866-016-0629-3

Abstract

Background: Helicobacter pylori MutS2 (HpMutS2), an inhibitor of recombination during transformation is a non-specific nuclease with two catalytic sites, both of which are essential for its anti-recombinase activity. Although HpMutS2 belongs to a highly conserved family of ABC transporter ATPases, the role of its ATP binding and hydrolysis activities remains elusive. Results: To explore the putative role of ATP binding and hydrolysis activities of HpMutS2 we specifically generated point mutations in the nucleotide-binding Walker-A (HpMutS2-G338R) and hydrolysis Walker-B (HpMutS2-E413A) domains of the protein. Compared to wild-type protein, HpMutS2-G338R exhibited similar to 2.5-fold lower affinity for both ATP and ADP while ATP hydrolysis was reduced by similar to 3-fold. Nucleotide binding efficiencies of HpMutS2-E413A were not significantly altered; however the ATP hydrolysis was reduced by similar to 10-fold. Although mutations in the Walker-A and Walker-B motifs of HpMutS2 only partially reduced its ability to bind and hydrolyze ATP, we demonstrate that these mutants not only exhibited alterations in the conformation, DNA binding and nuclease activities of the protein but failed to complement the hyper-recombinant phenotype displayed by mutS2-disrupted strain of H. pylori. In addition, we show that the nucleotide cofactor modulates the conformation, DNA binding and nuclease activities of HpMutS2. Conclusions: These data describe a strong crosstalk between the ATPase, DNA binding, and nuclease activities of HpMutS2. Furthermore these data show that both, ATP binding and hydrolysis activities of HpMutS2 are essential for the in vivo anti-recombinase function of the protein.

Item Type: Journal Article
Publication: BMC MICROBIOLOGY
Publisher: BIOMED CENTRAL LTD
Additional Information: Copy right for this article belongs to the BIOMED CENTRAL LTD, 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
Keywords: Helicobacter pylori; Transformation; MutS2; ATPase; DNA binding; Nuclease
Department/Centre: Division of Biological Sciences > Biochemistry
Date Deposited: 03 Mar 2016 05:14
Last Modified: 03 Mar 2016 05:14
URI: http://eprints.iisc.ac.in/id/eprint/53355

Actions (login required)

View Item View Item