Das, Debanjan and Shinde, SL and Nanda, KK (2016) Temperature-Dependent Photoluminescence of g-C3N4: Implication for Temperature Sensing. In: ACS APPLIED MATERIALS & INTERFACES, 8 (3). pp. 2181-2186.
PDF
ACS_App_Mat_Int_8-3_2181_2016.pdf - Published Version Restricted to Registered users only Download (4MB) | Request a copy |
Abstract
We report the temperature-dependent photoluminescence (PL) properties of polymeric graphite-like carbon nitride (g-C3N4) and a methodology for the determination of quantum efficiency along with the activation energy. The PL is shown to originate from three different pathways of transitions: sigma*-LP, pi*-LP, and pi*-pi, respectively. The overall activation energy is found to be similar to 73.58 meV which is much lower than the exciton binding energy reported theoretically but ideal for highly sensitive wide-range temperature sensing. The quantum yield derived from the PL data is 23.3%, whereas the absolute quantum yield is 5.3%. We propose that the temperature-dependent PL can be exploited for the evaluation of the temperature dependency of quantum yield as well as for temperature sensing. Our analysis further indicates that g-C3N4 is well-suited for wide-range temperature sensing.
Item Type: | Journal Article |
---|---|
Publication: | ACS APPLIED MATERIALS & INTERFACES |
Publisher: | AMER CHEMICAL SOC |
Additional Information: | Copy right for this article belongs to the AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA |
Keywords: | photoluminescence; sensing; nitride; activation energy; quantum efficiency |
Department/Centre: | Division of Chemical Sciences > Materials Research Centre |
Date Deposited: | 29 Feb 2016 06:38 |
Last Modified: | 29 Feb 2016 06:38 |
URI: | http://eprints.iisc.ac.in/id/eprint/53312 |
Actions (login required)
View Item |