Dasgupta, Queeny and Madras, Giridhar and Chatterjee, Kaushik (2016) Controlled release kinetics of p-aminosalicylic acid from biodegradable crosslinked polyesters for enhanced anti-mycobacterial activity. In: ACTA BIOMATERIALIA, 30 . pp. 168-176.
PDF
Act_Bio_30_168_2016.pdf - Published Version Restricted to Registered users only Download (771kB) | Request a copy |
Abstract
Unlike conventional polymeric drug delivery systems, where drugs are entrapped in polymers, this study focuses on the incorporation of the drug into the polymer backbone to achieve higher loading and sustained release. Crosslinked, biodegradable, xylitol based polyesters have been synthesized in this study. The bioactive drug moiety, p-aminosalicylic acid (PAS), was incorporated in xylitol based polyesters to impart its anti-mycobacterial activity. To understand the influence of the monomer chemistry on the incorporation of PAS and its subsequent release from the polymer, different diacids have been used. Controlled release profiles of the drug from these polyesters were studied under normal physiological conditions. The degradation of the polyesters varied from 48% to 76% and the release of PAS ranged from 54% to 65% of its initial loading in 7 days. A new model was developed to explain the release kinetics of PAS from the polymer that accounted for the polymer degradation and drug concentration. The thermal, mechanical, drug release and cytocompatibility properties of the polymers indicate their suitability in biomedical applications. The released products from these polymers were observed to be pharmacologically active against Mycobacteria. The high drug loading and sustained release also ensured enhanced efficacy. These polymers form biocompatible, biodegradable polyesters where the sustained release of PAS may be tailored for potential treatment of mycobacterial infections. Statement of significance In the present work, we report on novel polyesters with p-aminosalicylic acid (PAS) incorporated in the polymer backbone. The current work aims to achieve controlled release of PAS and ensures the delivered PAS is stable and pharmacologically active. The novelty of this work primarily involves the synthetic chemistry of polymerization and detailed analysis and efficacy of active PAS delivery. A new kinetic model has been developed to explain the PAS release profiles. These polymers are biodegradable, cytocompatible and anti-mycobacterial in nature. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Item Type: | Journal Article |
---|---|
Publication: | ACTA BIOMATERIALIA |
Publisher: | ELSEVIER SCI LTD |
Additional Information: | Copy right for this article belongs to the ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND |
Keywords: | Polyesters; p-aminosalicylic acid; Controlled release; Mycobacteria; Biodegradable polymers |
Department/Centre: | Division of Mechanical Sciences > Chemical Engineering Division of Mechanical Sciences > Materials Engineering (formerly Metallurgy) |
Date Deposited: | 18 Feb 2016 06:16 |
Last Modified: | 31 Jan 2019 06:29 |
URI: | http://eprints.iisc.ac.in/id/eprint/53272 |
Actions (login required)
View Item |