ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Raman Spectroscopic Studies on Screening of Myopathies

Gautam, Rekha and Vanga, Sandeep and Madan, Aditi and Gayathri, Narayanappa and Nongthomba, Upendra and Umapathy, Siva (2015) Raman Spectroscopic Studies on Screening of Myopathies. In: ANALYTICAL CHEMISTRY, 87 (4). pp. 2187-2194.

[img] PDF
ana_che_87-4_2015.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy
Official URL: http://dx.doi.org/ 10.1021/ac503647x


Myopathies are among the major causes of mortality in the world. There is no complete cure for this heterogeneous group of diseases, but a sensitive, specific, and fast diagnostic tool may improve therapy effectiveness. In this study, Raman spectroscopy is applied to discriminate between muscle mutants in Drosophila on the basis of associated changes at the molecular level. Raman spectra were collected from indirect flight muscles of mutants, upheld1 (up1), heldup(2) (hdp(2)), myosin heavy chain7 (Mhc7), actin88F(KM88) (Act88F(KM88)), upheld101 (up101), and Canton-S (CS) control group, for both 2 and 12 days old flies. Difference spectra (mutant minus control) of all the mutants showed an increase in nucleic acid and beta-sheet and/or random coil protein content along with a decrease in a-helix protein. Interestingly, the 12th day samples of up1 and Act88F(KM88) showed significantly higher levels of glycogen and carotenoids than CS. A principal components based linear discriminant analysis classification model was developed based on multidimensional Raman spectra, which classified the mutants according to their pathophysiology and yielded an overall accuracy of 97% and 93% for 2 and 12 days old flies, respectively. The up1 and Act88F(KM88) (nemaline-myopathy) mutants form a group that is clearly separated in a linear discriminant plane from up101 and hdp2 (cardiomyopathy) mutants. Notably, Raman spectra from a human sample with nemaline-myopathy formed a cluster with the corresponding Drosophila mutant (up1). In conclusion, this is the first demonstration in which myopathies, despite their heterogeneity, were screened on the basis of biochemical differences using Raman spectroscopy.

Item Type: Journal Article
Additional Information: Copy right for this article belongs to the AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
Department/Centre: Division of Biological Sciences > Molecular Reproduction, Development & Genetics
Division of Chemical Sciences > Inorganic & Physical Chemistry
Division of Physical & Mathematical Sciences > Instrumentation Appiled Physics
Date Deposited: 01 Apr 2015 12:09
Last Modified: 01 Apr 2015 12:09
URI: http://eprints.iisc.ac.in/id/eprint/51129

Actions (login required)

View Item View Item