ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Flux Transport Dynamos: From Kinematics to Dynamics

Karak, Bidya Binay and Jiang, Jie and Miesch, Mark S and Charbonneau, Paul and Choudhuri, Arnab Rai (2014) Flux Transport Dynamos: From Kinematics to Dynamics. In: SPACE SCIENCE REVIEWS, 186 (1-4). pp. 561-602.

[img] PDF
spa_sci_rev_186-1_561_2014.pdf - Published Version
Restricted to Registered users only

Download (4MB) | Request a copy
Official URL: http://dx.doi.org/10.1007/s11214-014-0099-6

Abstract

Over the past several decades, Flux-Transport Dynamo (FTD) models have emerged as a popular paradigm for explaining the cyclic nature of solar magnetic activity. Their defining characteristic is the key role played by the mean meridional circulation in transporting magnetic flux and thereby regulating the cycle period. Most FTD models also incorporate the so-called Babcock-Leighton (BL) mechanism in which the mean poloidal field is produced by the emergence and subsequent dispersal of bipolar active regions. This feature is well grounded in solar observations and provides a means for assimilating observed surface flows and fields into the models in order to forecast future solar activity, to identify model biases, and to clarify the underlying physical processes. Furthermore, interpreting historical sunspot records within the context of FTD models can potentially provide insight into why cycle features such as amplitude and duration vary and what causes extreme events such as Grand Minima. Though they are generally robust in a modeling sense and make good contact with observed cycle features, FTD models rely on input physics that is only partially constrained by observation and that neglects the subtleties of convective transport, convective field generation, and nonlinear feedbacks. Here we review the formulation and application of FTD models and assess our current understanding of the input physics based largely on complementary 3D MHD simulations of solar convection, dynamo action, and flux emergence.

Item Type: Journal Article
Publication: SPACE SCIENCE REVIEWS
Publisher: SPRINGER
Additional Information: Copyright for this article belongs to the SPRINGER, VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
Keywords: Sun; Solar cycle; Dynamo
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 14 Feb 2015 13:36
Last Modified: 14 Feb 2015 13:36
URI: http://eprints.iisc.ac.in/id/eprint/50825

Actions (login required)

View Item View Item