Shamim, S and Mahapatra, S and Scappucci, G and Klesse, WM and Simmons, MY and Ghosh, A (2014) Spontaneous Breaking of Time-Reversal Symmetry in Strongly Interacting Two-Dimensional Electron Layers in Silicon and Germanium. In: PHYSICAL REVIEW LETTERS, 112 (23).
PDF
Phy-Rev-Let_112-23_2014.pdf.pdf - Published Version Restricted to Registered users only Download (805kB) | Request a copy |
Abstract
We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si: P and Ge: P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.
Item Type: | Journal Article |
---|---|
Publication: | PHYSICAL REVIEW LETTERS |
Publisher: | AMER PHYSICAL SOC |
Additional Information: | Copyright for this article belongs to the AMER PHYSICAL SOC, ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA |
Department/Centre: | Division of Physical & Mathematical Sciences > Physics |
Date Deposited: | 16 Jul 2014 09:08 |
Last Modified: | 16 Jul 2014 09:08 |
URI: | http://eprints.iisc.ac.in/id/eprint/49409 |
Actions (login required)
View Item |