Mathias, Nisha and Gopal, Venkatesh (2001) Small worlds: How and why. In: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 63 (2). 021117/1-12.
|
PDF
Small_worlds.pdf Download (264kB) |
Abstract
We investigate small-world networks from the point of view of their origin. While the characteristics of small-world networks are now fairly well understood, there is as yet no work on what drives the emergence of such a network architecture. In situations such as neural or transportation networks, where a physical distance between the nodes of the network exists, we study whether the small-world topology arises as a consequence of a tradeoff between maximal connectivity and minimal wiring. Using simulated annealing, we study the properties of a randomly rewired network as the relative tradeoff between wiring and connectivity is varied. When the network seeks to minimize wiring, a regular graph results. At the other extreme, when connectivity is maximized, a "random" network is obtained. In the intermediate regime, a small-world network is formed. However, unlike the model of Watts and Strogatz [Nature 393, 440 (1998)], we find an alternate route to small-world behavior through the formation of hubs, small clusters where one vertex is connected to a large number of neighbors.
Item Type: | Journal Article |
---|---|
Publication: | Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) |
Publisher: | American Physical Society (APS) |
Additional Information: | The DOI is currently only displayed. Copyright for this article belongs to American Physical Society (APS) |
Department/Centre: | Division of Electrical Sciences > Computer Science & Automation |
Date Deposited: | 28 Jun 2004 |
Last Modified: | 19 Sep 2010 04:13 |
URI: | http://eprints.iisc.ac.in/id/eprint/454 |
Actions (login required)
View Item |