Bhattacharya, Sitangshu and Mallik, Ramesh Chandra (2012) Electrical Resistance and Seebeck Coefficient in PbTe Nanowires. In: JOURNAL OF ELECTRONIC MATERIALS, 41 (6). pp. 1421-1428.
PDF
jou_ele_mat_41-6_2012.pdf - Published Version Restricted to Registered users only Download (313kB) | Request a copy |
Abstract
We address a physics-based simplified analytical formulation of the diffusive electrical resistance ( (Omega)) and Seebeck coefficient () in a PbTe nanowire dominated by acoustic phonon scattering under the presence of a low static longitudinal electric field. The use of a second-order nonparabolic electron energy band structure involving a geometry-dependent band gap has been selected in principle to demonstrate that the electron mean free path (MFP) in such a system can reach as low as about 8 nm at room temperature for a 10-nm-wide PbTe nanowire. This is followed by the formulation of the carrier back-scattering coefficient for determination of (Omega) and as functions of wire dimensions, temperature, and the field, respectively. The present analytical formulation agrees well with the available experimental data and may find extensive use in determination of various electrothermal transport phenomena in PbTe-based one-dimensional electron devices.
Item Type: | Journal Article |
---|---|
Publication: | JOURNAL OF ELECTRONIC MATERIALS |
Publisher: | SPRINGER |
Additional Information: | Copyright for this article belongs to Springer |
Keywords: | Nanowires; phonon scattering;band nonparabolicity;electrical resistance;Seebeck coefficient |
Department/Centre: | Division of Electrical Sciences > Electronic Systems Engineering (Formerly Centre for Electronic Design & Technology) Division of Physical & Mathematical Sciences > Physics |
Date Deposited: | 14 Jul 2012 07:01 |
Last Modified: | 14 Jul 2012 07:01 |
URI: | http://eprints.iisc.ac.in/id/eprint/44685 |
Actions (login required)
View Item |