ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Smooth DMS-FEM: A new approach to solving nearly incompressible nonlinear elasto-static problems

Sunilkumar, N and Roy, D and Reid, SR (2012) Smooth DMS-FEM: A new approach to solving nearly incompressible nonlinear elasto-static problems. In: International Journal of Mechanical Sciences, 54 (1). pp. 136-155.

[img] PDF
Smooth_DMS.pdf - Published Version
Restricted to Registered users only

Download (3MB) | Request a copy
Official URL: http://dx.doi.org/10.1016/j.ijmecsci.2011.10.004


The DMS-FEM, which enables functional approximations with C(1) or still higher inter-element continuity within an FEM-based meshing of the domain, has recently been proposed by Sunilkumar and Roy [39,40]. Through numerical explorations on linear elasto-static problems, the method was found to have conspicuously superior convergence characteristics as well as higher numerical stability against locking. These observations motivate the present study, which aims at extending and exploring the DMS-FEM to (geometrically) nonlinear elasto-static problems of interest in solid mechanics and assessing its numerical performance vis-a-vis the FEM. In particular, the DMS-FEM is shown to vastly outperform the FEM (presently implemented through the commercial software ANSYS (R)) as the former requires fewer linearization and load steps to achieve convergence. In addition, in the context of nearly incompressible nonlinear systems prone to volumetric locking and with no special numerical artefacts (e.g. stabilized or mixed weak forms) employed to arrest locking, the DMS-FEM is shown to approach the incompressibility limit much more closely and with significantly fewer iterations than the FEM. The numerical findings are suggestive of the important role that higher order (uniform) continuity of the approximated field variables play in overcoming volumetric locking and the great promise that the method holds for a range of other numerically ill-conditioned problems of interest in computational structural mechanics. (C) 2011 Elsevier Ltd. All rights reserved.

Item Type: Journal Article
Publication: International Journal of Mechanical Sciences
Publisher: Elsevier Science
Additional Information: Copyright of this article belongs to Elsevier Science.
Keywords: DMS-FEM;Knotclouds;Delaunay tessellation;NURBS;Polynomial reproduction;Nonlinear elasticity
Department/Centre: Division of Mechanical Sciences > Civil Engineering
Date Deposited: 17 Feb 2012 10:11
Last Modified: 17 Feb 2012 10:11
URI: http://eprints.iisc.ac.in/id/eprint/43533

Actions (login required)

View Item View Item