ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Utilizing an ionic liquid for synthesizing a soft matter polymer ``gel'' electrolyte for high rate capability lithium-ion batteries

Patel, Monalisa and Gnanavel, M and Bhattacharyya, Aninda J (2011) Utilizing an ionic liquid for synthesizing a soft matter polymer ``gel'' electrolyte for high rate capability lithium-ion batteries. In: Journal of Materials Chemistry, 21 (43). pp. 17419-17424.

[img] PDF
Utilizing_an_ionic.pdf - Published Version
Restricted to Registered users only

Download (433kB) | Request a copy
Official URL: http://pubs.rsc.org/en/Content/ArticleLanding/2011...

Abstract

A cross-linked polymer ``gel'' electrolyte obtained from free radical polymerization of a vinyl monomer (acrylonitrile; AN) in a room temperature ionic liquid electrolyte (N,N-methyl butyl pyrrolidinium-bis (trifluoromethanesulphonyl)imide-lithium bis(trifluoromethanesulphonyl) imide;LiTFSI-[Py(1,4)-TFSI]) for application in high rate capability rechargeable lithium-ion batteries is discussed here. This is a novel alternative compared to the often employed approach of using a molecular liquid as the medium for performing the polymerization reaction. The polymer ``gel'' electrolytes (AN:Py(1,4)-TFSI = 0.16-0.18, w/w) showed remarkable compliable mechanical strength and higher thermal stability compared to LiTFSI-[Py(1,4)-TFSI]. Despite two orders increase in magnitude of viscosity of polymer ``gels'', the room temperature ionic conductivity of the ``gels'' (1.1 x 10(-3)-1.7 x 10(-3) Omega(-1) cm(-1)) were nearly identical to that of the ionic liquid (1.8 x 10(-3) Omega(-1) cm(-1)). The present ``gel'' electrolytes did not exhibit any ageing effects on ionic conductivity similar to the conventional polymer gel electrolytes (e.g. high molecular weight polymer + salt + high dielectric constant molecular solvent). The disorder (ionic liquid) to a relative order (cross-linked polymer electrolyte) transformation does not at all influence the concentration of conducting species. The polymer framework is still able to provide efficient pathways for fast ion transport. Unlike the ionic liquid which is impossible to assemble without a conventional separator in a cell, the polymer ``gel'' electrolyte could be conveniently assembled without a separator in a Li vertical bar lithium iron phosphate (LiFePO(4)) cell. Compared to the ionic liquid, the ``gel'' electrolyte showed exceptional cyclability and rate capability (current density: 35-760 mA g(-1) with LiFePO(4) electronically wired with carbon (amorphous or multiwalled nanotube [MWCNT]).

Item Type: Journal Article
Publication: Journal of Materials Chemistry
Publisher: Royal Society of Chemistry
Additional Information: Copyright of this article belongs to Royal Society of Chemistry.
Department/Centre: Division of Chemical Sciences > Solid State & Structural Chemistry Unit
Date Deposited: 24 Nov 2011 06:10
Last Modified: 24 Nov 2011 06:10
URI: http://eprints.iisc.ac.in/id/eprint/42302

Actions (login required)

View Item View Item