Srivastava, C and Chithra, S and Malviya, KD and Sinha, SK and Chattopadhyay, K (2011) Size dependent microstructure for Ag-Ni nanoparticles. In: Acta Materialia, 59 (16). pp. 6501-6509.
PDF
Size_dependent.pdf - Published Version Restricted to Registered users only Download (973kB) | Request a copy |
Abstract
The Ag-Ni system is characterized by large differences in atomic sizes (14%) and a positive heat of mixing (+23 kJ mol(-1)). The binary equilibrium diagram for this system therefore exhibits a large miscibility gap in both solid and liquid state. This paper explores the size-dependent changes in microstructure and the suppression of the miscibility gap which occurs when free alloy particles of nanometer size are synthesized by co-reduction of Ag and Ni metal precursors. The paper reports that complete mixing between Ag and Ni atoms could be achieved for smaller nanoparticles (<7 nm). These particles exhibit a single-phase solid solution with face-centered cubic (fcc) structure. With increase in size, the nanoparticles revealed two distinct regions. One of the regions is composed of pure Ag. This region partially surrounds a region of fcc solid solution at an early stage of decomposition. Experimental observations were compared with the results obtained from the thermodynamic calculations, which compared the free energies corresponding to a physical mixture of pure Ag and Ni phases and a fcc Ag-Ni solid solution for different particle sizes. Results from the theoretical calculations revealed that, for the Ag-Ni system, solid solution was energetically preferred over the physical mixture configuration for particle sizes of 7 nm and below. The experimentally observed two-phase microstructure for larger particles was thus primarily due to the growth of Ag-rich regions epitaxially on initially formed small fcc Ag-Ni nanoparticles. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Item Type: | Journal Article |
---|---|
Publication: | Acta Materialia |
Publisher: | Elsevier Science |
Additional Information: | Copyright of this article belongs to Elsevier Science. |
Keywords: | Miscibility gap;Nanoparticles;Electron microscopy; Composition;Gibbs free energy |
Department/Centre: | Division of Mechanical Sciences > Materials Engineering (formerly Metallurgy) |
Date Deposited: | 30 Sep 2011 06:08 |
Last Modified: | 30 Sep 2011 06:08 |
URI: | http://eprints.iisc.ac.in/id/eprint/41009 |
Actions (login required)
View Item |