ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Crystal structure of quenched and in-field electroluminescent phosphors

Fern, GR and Ireland, T and Harris, P and Silver, J and Withnall, R and Salimian, A and Santra, PK and Leoni, M and Erko, A and Lennie, A and Tang, CC (2011) Crystal structure of quenched and in-field electroluminescent phosphors. In: Diamond Light Source Proceedings, 1 (7). e106.

[img] PDF
Crystal_structure.pdf - Published Version
Restricted to Registered users only

Download (115kB) | Request a copy
Official URL: http://journals.cambridge.org/action/displayAbstra...

Abstract

Electroluminescent zinc sulfide doped with copper and chloride (ZnS:Cu, Cl) powder was heated to 400°C and rapidly quenched to room temperature. Comparison between the quenched and non-quenched phosphors using synchrotron radiation X-ray powder diffraction (XRPD) (λ = 0.828692 Å) and X-ray absorption spectroscopy (XAS) was made. XRPD shows that the expected highly faulted structure is observed with excellent resolution out to 150° 2θ (or to (12 2 2) of the sphalerite phase). The quenched sample compared to the unheated sample shows a large change in peak ratios between 46.7° and 46.9°, which is thought to correspond to the wurtzite (0 0 6), (0 3 2) and sphalerite (3 3 3)/(5 1 1) peaks. Hence, a large proportion of this sphalerite diffraction is lost from the material upon rapid quenching, but not when the material is allowed to cool slowly. The Zn K-edge XAS data indicate that the crystalline structures are indistinguishable using this technique, but do give an indication that the electronic structure has altered due to changing intensity of the white line. It is noted that the blue electroluminescence (EL) emission bands are lost upon quenching: however, a large amount of total EL emission intensity is also removed, which is consistent with our findings. We report the XRPD of a working alternating-current electroluminescence device in the synchrotron X-ray beam, which exhibits a new diffraction pattern when the device is powered in an AC field even though the phosphor is fixed in the binder. Significantly, only a few crystals are required to yield the diffraction data because of the high flux X-ray source. These in panel data show multiple sharp diffraction lines spread out under the region, where capillary data show broad diffraction intensity indicating that the phosphor powder is comprised of unique crystals, each having different structures.

Item Type: Journal Article
Publication: Diamond Light Source Proceedings
Publisher: Cambridge University Press
Additional Information: Copyright of this article belongs to Cambridge University Press.
Department/Centre: Division of Chemical Sciences > Solid State & Structural Chemistry Unit
Date Deposited: 25 Aug 2011 10:17
Last Modified: 25 Aug 2011 10:17
URI: http://eprints.iisc.ac.in/id/eprint/40323

Actions (login required)

View Item View Item