Bhattacharyya, Bhattacharyya T and Mohandas, Mohandas JP (2005) Two-Parameter Uniformly Elliptic Sturm–Liouville Problems With Eigenparameter-Dependent Boundary Conditions. In: Proceedings of the Edinburgh Mathematical Society (Series 2), 48 . pp. 531-547.
Full text not available from this repository. (Request a copy)Abstract
We consider the two-parameter Sturm–Liouville system $$ -y_1''+q_1y_1=(\lambda r_{11}+\mu r_{12})y_1\quad\text{on }[0,1], $$ with the boundary conditions $$ \frac{y_1'(0)}{y_1(0)}=\cot\alpha_1\quad\text{and}\quad\frac{y_1'(1)}{y_1(1)}=\frac{a_1\lambda+b_1}{c_1\lambda+d_1}, $$ and $$ -y_2''+q_2y_2=(\lambda r_{21}+\mu r_{22})y_2\quad\text{on }[0,1], $$ with the boundary conditions $$ \frac{y_2'(0)}{y_2(0)} =\cot\alpha_2\quad\text{and}\quad\frac{y_2'(1)}{y_2(1)}=\frac{a_2\mu+b_2}{c_2\mu+d_2}, $$ subject to the uniform-left-definite and uniform-ellipticity conditions; where $q_{i}$ and $r_{ij}$ are continuous real valued functions on $[0,1]$, the angle $\alpha_{i}$ is in $[0,\pi)$ and $a_{i}$, $b_{i}$, $c_{i}$, $d_{i}$ are real numbers with $\delta_{i}=a_{i}d_{i}-b_{i}c_{i}>0$ and $c_{i}\neq0$ for $i,j=1,2$. Results are given on asymptotics, oscillation of eigenfunctions and location of eigenvalues.
Item Type: | Journal Article |
---|---|
Publication: | Proceedings of the Edinburgh Mathematical Society (Series 2) |
Publisher: | Cambridge University Press |
Additional Information: | Copyright of this article belongs to Cambridge University Press. |
Department/Centre: | Division of Physical & Mathematical Sciences > Mathematics |
Date Deposited: | 19 Aug 2011 10:13 |
Last Modified: | 19 Aug 2011 10:13 |
URI: | http://eprints.iisc.ac.in/id/eprint/39980 |
Actions (login required)
View Item |