ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Ab initio, DFT and transition state theory calculations on 1,2-HF, HCI and CIF elimination reactions from CH2F-CH2Cl

Rajakumar, B and Arunan, E (2003) Ab initio, DFT and transition state theory calculations on 1,2-HF, HCI and CIF elimination reactions from CH2F-CH2Cl. In: PCCP: Physical Chemistry Chemical Physics, 5 (18). pp. 3897-3904.

[img] PDF
Ab_initio,_DFT.pdf - Published Version
Restricted to Registered users only

Download (216kB) | Request a copy
Official URL: http://pubs.rsc.org/en/Content/ArticleLanding/2003...

Abstract

This paper reports ab intio, DFT and transition state theory (TST) calculations on HF, HCI and CIF elimination reactions from CH2Cl-CH2F molecule. Both the ground state and the transition state for HX elimination reactions have been optimized at HF, MP2 and DFT calculations with 6-31G*, 6-31G** and 6-311++G** basis sets. In addition, CCSD(T) single point calculations were carried out with MP2/6-311++G** optimized geometry for more accurate determination of the energies of the minima and transition state, compared to the other methods employed here. Classical barriers are converted to Arrhenius activation energy by TST calculations for comparisons with experimental results. The pre-exponential factors, A, calculated at all levels of theory are significantly larger than the experimental values. For activation energy, E-a DFT gives good results for HF elimination, within 4-8 W mol(-1) from experimental values. None of the methods employed, including CCSD(T), give comparable results for HCI elimination reactions. However, rate constants calculated by CCSD(T) method are in very good agreement with experiment for HCI elimination and they are in reasonable agreement for HF elimination reactions. Due to the strong correlation between A and E., the rate constants could be fit to a lower A and E-a (as given by experimental fitting, corresponding to a tight TS) or to larger A and E-a (as given by high level ab initio calculations, corresponding to a loose TS). The barrier for CIF elimination is determined to be 607 U mol(-1) at HF level and it is unlikely to be important for CH2FCH2Cl. Results for other CH2X-CH2Y (X,Y = F/Cl) are included for comparison.

Item Type: Journal Article
Publication: PCCP: Physical Chemistry Chemical Physics
Publisher: Royal Society of Chemistry
Additional Information: Copyright of this article belongs to Royal Society of Chemistry.
Department/Centre: Division of Chemical Sciences > Inorganic & Physical Chemistry
Date Deposited: 03 Aug 2011 10:09
Last Modified: 03 Aug 2011 10:09
URI: http://eprints.iisc.ac.in/id/eprint/39696

Actions (login required)

View Item View Item