ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Machine recognition of printed Kannada text

Kumar, Vijay B and Ramakrishnan, AG (2002) Machine recognition of printed Kannada text. In: Lecture Notes in Computer Science, 2423 . pp. 37-48.

[img] PDF
Machine_Recognition.pdf - Published Version
Restricted to Registered users only

Download (262kB) | Request a copy
Official URL: http://www.springerlink.com/content/09gn4jx2eqcwk9...


This paper presents the design of a full fledged OCR system for printed Kannada text. The machine recognition of Kannada characters is difficult due to similarity in the shapes of different characters, script complexity and non-uniqueness in the representation of diacritics. The document image is subject to line segmentation, word segmentation and zone detection. From the zonal information, base characters, vowel modifiers and consonant conjucts are separated. Knowledge based approach is employed for recognizing the base characters. Various features are employed for recognising the characters. These include the coefficients of the Discrete Cosine Transform, Discrete Wavelet Transform and Karhunen-Louve Transform. These features are fed to different classifiers. Structural features are used in the subsequent levels to discriminate confused characters. Use of structural features, increases recognition rate from 93% to 98%. Apart from the classical pattern classification technique of nearest neighbour, Artificial Neural Network (ANN) based classifiers like Back Propogation and Radial Basis Function (RBF) Networks have also been studied. The ANN classifiers are trained in supervised mode using the transform features. Highest recognition rate of 99% is obtained with RBF using second level approximation coefficients of Haar wavelets as the features on presegmented base characters.

Item Type: Editorials/Short Communications
Publication: Lecture Notes in Computer Science
Publisher: Springer
Additional Information: Copyright of this article belongs to Springer.
Department/Centre: Division of Electrical Sciences > Electrical Engineering
Date Deposited: 20 Jul 2011 05:00
Last Modified: 20 Jul 2011 05:00
URI: http://eprints.iisc.ac.in/id/eprint/39265

Actions (login required)

View Item View Item