ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Solution combustion derived nanocrystalline macroporous wollastonite ceramics

Chakradhar, Sreekanth RP and Nagabhushana, BM and Chandrappa, GT and Ramesh, KP and Rao, JL (2006) Solution combustion derived nanocrystalline macroporous wollastonite ceramics. In: Materials Chemistry and Physics, 95 (1). pp. 169-175.

[img]
Preview
PDF
RPS-Review.pdf

Download (335kB)

Abstract

Macroporous nanocrystalline wollastonite $(CaSiO_{3})$ ceramic powders have been prepared by a simple, low-temperature initiated, self-propagating and gas producing solution combustion process. The effects of temperature on crystalline phase formation, amount of porogens and particle size of porous $CaSiO_{3}$ and its structure have been investigated. It is observed that heat-treated wollastonite at 950 and 1200 degree C shows single phase of $\beta-CaSiO_{3}$ and $\alpha-CaSiO_{3}$, respectively. The results show that the phase transformation temperatures of the solution combustion derived wollastonite powder were found to be lower compare to the powders obtained via solid-state reaction method. It was observed that the average particle size of the annealed $CaSiO_{3}$ samples is in the range 29-50 nm. The density of the as formed powder is 1.73 g$cm^{-3}$ where as the bulk density is 2.321 g$cm^{-3}$, which corresponds nearly to 80% of the theoretical density (2.91 g$cm^{-3}$). The samples calcined for 3 h at 950 degree C have 51.1% of theoretical density with a porosity of 17.5%, however, the porosity increases with calcination and at 1200 degree C has a large porosity of 31.6%. The microstructure and morphology were studied by scanning electron microscope (SEM) and it is interesting to note that with increase in calcination temperature, the samples become more porous and the pore diameter increases from 0.25 to 8m. The surface area of the as formed, 950 and 1200 degree C calcined samples were 31.93, 0.585 and 3.48 $m^{2} g^{-1}$, respectively. The structure of $CaSiO_{3}$ has been investigated by $^{29}$Si MAS NMR. The shape of the $Q_{n}$ distribution has been examined for the as formed $CaSiO_{3}$ as well as calcined (950 degree C) sample.

Item Type: Journal Article
Publication: Materials Chemistry and Physics
Publisher: Elsevier Science BV
Additional Information: Copyright for this article belongs to Elsevier.
Keywords: Powders chemical preparation;Macroporous;Nanocrystalline;Ceramics;Biomedical applications
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 26 Oct 2005
Last Modified: 19 Sep 2010 04:20
URI: http://eprints.iisc.ac.in/id/eprint/3891

Actions (login required)

View Item View Item